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Abstract. We study domain growth dynamics when the target state is suddenly changed on all length
scales. This procedure mimics the ‘chaos’ effect postulated by the droplet theory of spin-glasses, and
allows us to investigate in details its various dynamical consequences. We study the problem by a variety
of methods, including scaling arguments, analytical solution of the spherical Mattis model, and Monte
Carlo simulations of a 2-dimensional Ising Mattis model. We show that successive coarsening with respect
to different equilibrium states imprints multiple domain structures on top of each other, plus extra noise
due to random interferences. We demonstrate that the domain structures can be retrieved by an additional
series of coarsening in the reversed order which removes the noises. We discuss the rejuvenation (chaos)
and memory effects observed in temperature-cycling experiments in glassy systems from the present point
of view, and discuss some open problems and alternative descriptions.

PACS. 75.50.Lk Spin glasses and other random magnets – 75.10.Nr Spin-glass and other random models
– 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.)

1 Introduction

Marginal stability of the glassy equilibrium states to weak
perturbations such as a small shift of temperatures has
been a fundamental interest in the studies of spin-glasses
and related systems including vortex lines systems in dirty
type-II super-conductors. In particular, the droplet pic-
ture based on scaling arguments and Migdal-Kadanoff
type real-space renormalization-group calculations [1–4]
claims that any small but finite perturbation, such as
changes of temperature by an amount ∆T , is enough to
change the equilibrium states in such glassy-systems com-
pletely at length scales larger than the so called overlap
length ξ∆T . Such a dramatic effect has been coined tem-
perature chaos. It was anticipated that such a change of
the equilibrium states, if it exists, should have significant
consequences on dynamical observables such as the dy-
namical linear-susceptibility [5,6].

From the experimental side, a series of interesting
experiments have been done with different spin-glasses
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measuring relaxations of thermo-remanent magnetization
(TRM), zero-field cool magnetization (ZFC) and AC-
magnetic susceptibilities. They show strikingly rich dy-
namical aspects of spin-glasses subjected to small tem-
perature cycles (within the spin-glass phase) [7–16]. The
main outcome of the experiments is the coexistence of
two seemingly contradictory aspects, namely ‘rejuvena-
tion’ upon cooling and ‘memory’ upon heating back. These
experiments in spin-glasses have motivated similar exper-
imental studies in other glassy systems including polymer
glass [17], frozen ferrofluid [18], random ferromagnetic sys-
tem [19], random ferroelectric system [20,21] and struc-
tural glass [22].

The rejuvenation effect can be interpreted as a
signature of the chaotic change of the underlying equilib-
rium states as anticipated by the droplet picture. How-
ever the simultaneous memory effect is not obvious to
account for within the droplet picture, and the previous
attempts have remained unsatisfactory [5,6,13]. The need
for some mechanism which allows conservation of large
scale spatial structures to preserve memory is now clearly
realized [14,15,23].

On the other hand, there has been recent remarkable
progress in the dynamical mean-field theory for glassy
systems [27–31]. It was in particular shown within the
mean-field theory [31] that temperature-cycling processes
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amount to a cycling of break-point qEA which separates
the stationary and aging part of the correlation and re-
sponse functions. The cycling of qEA can push a part
of the stationary signal into the non-stationary regime
(thereby leading to rejuvenation), while preserving the
rest of the non-stationary part (memory) for large enough
time scales.

A somewhat similar picture was advocated within a hi-
erarchical phase space picture [7], where each level of the
hierarchical tree has its own glass temperature. Therefore,
a small temperature drop drives a certain level out of equi-
librium (rejuvenation) while higher level of the tree are
frozen (memory) [24]. An important motivation for this
picture is the Parisi’s replica-symmetry breaking solution
for the static properties of mean-field spin-glass models
[25] This scenario has been recently substantiated by in-
teresting numerical simulations [26]. Its real-space tran-
scription in terms of a hierarchy of time scales associated
with different length scales was developed in [23], in par-
ticular in the context of pinned domain walls [19].

In the present paper, we want to go back to the original
droplet picture and work out in details the dynamical con-
sequences of chaotic changes of the underlying equilibrium
state, and in particular address the question of memory-
conservation. To simplify the approach, we restrict
ourselves to the simplest scenario for the relaxational dy-
namics as in [5]. Namely we assume that relaxational dy-
namics at any temperature is a coarsening process of the
domain walls between an equilibrium pure state and its
time-reversal state. As we noted above, changes of tem-
perature amount to complete changes of the equilibrium
states beyond ξ∆T in the droplet picture. In order to in-
vestigate the temperature cycling procedures based on the
droplet picture, we have studied coarsening subjected to
cycling of the underlying equilibrium state which we im-
pose by hand. In the present paper, we disregard possi-
ble transient short-time behaviors associated with length
scales smaller than ξ∆T and concentrate on the large time
phenomena. Somewhat unexpectedly, we found that the
domain structure corresponding to the different equilib-
rium states that are encountered can indeed be preserved
and retrieved dynamically. We will show that the droplet
picture itself can provide a suggestive and interesting sce-
nario for the rejuvenation and memory effects observed in
experiments of spin-glasses.

It is known that changes of temperature in a class
of frustrated systems can change the effective coupling
between certain ‘block spins’ due subtle entropy effects,
so that interesting re-entrant phase transitions can oc-
cur [32]. This has motivated a recent work in which some-
what similar ideas for the mechanism of temperature-
cycling experiments are presented [33].

The outline of the present paper is as the following.
In Section 2 we briefly review the droplet picture which
underlies the present study. In Section 3 we introduce our
models and discuss the generic features of coarsening sys-
tems subjected to equilibrium states cycling, based on the
standard phenomenology of coarsening systems. In Sec-
tion 4 we study the dynamics of the O(n) Mattis model in

the spherical limit which is described by a time dependent
Ginzburg-Landau (TDGL) equation. We solve the TDGL
equation exactly under cycling of equilibrium states and
examine the physical picture discussed in Section 3. In
Section 5 we study 2-dimensional Ising Mattis model by
Monte Carlo simulations to further check our picture.
In Section 6 we compare our results with the rejuvena-
tion (chaos) and memory effects observed in temperature-
cycling experiments in a spin-glass system. Finally, in Sec-
tion 7 we summarize our result and underline important
open questions. In the appendices, we present some tech-
nical details of the calculations of the O(n) Mattis model.

2 The droplet picture

Here we briefly review the droplet picture which is the
background of the present study. For simplicity let us con-
sider spin-glasses which have Z2 symmetry like Ising spin-
glasses. In the droplet picture, it is assumed that there
exists only one equilibrium states and its time-reversal
state at each temperature below the spin-glass transition
temperature Tc. In equilibrium, the most important con-
tributions to physical observables such as the magnetic
susceptibility comes from thermally activated excitations
of compact clusters of spins, called droplets.

Let us consider for simplicity the equilibrium state at
zero temperature, i.e. the ground state. The total number
of spins at the surface of a droplet of size L is postulated
to scale typically as L0(L/L0)ds where ds is the fractal
dimension of the surface and L0 is a microscopic length
scale. By definition, a droplet of size L should have a non-
zero excitation energy gap. The excitation energy of the
droplet Egap typically scales with L as Egap ∼ Υ (L/L0)θ.
Here Υ is the stiffness constant and θ is the stiffness ex-
ponent.

The dynamics of droplets is considered to be a ther-
mally activated process. The energy barrier Ebarrier to cre-
ate a droplet is supposed to scales with L as Ebarrier ∼
Υ (L/L0)ψ with ψ ≥ θ. The relaxation time is given by
the Arrhenius law,

tL ∼ τ0 exp(Υ (L/L0)ψ/kBT ), (1)

where τ0 is the attempt time for the activated process.

2.1 Effect of temperature change on equilibrium states

In the droplet picture, small temperature changes cause
substantial changes of the equilibrium state. The argu-
ment goes as follows: the entropy associated to a droplet
is the sum of contributions which are random in sign over
the surface of the droplet. The latter implies the entropy
associated with a droplet of size L is random in sign,
and of magnitude ∼ kB

√
(L/L0)ds . A subtle conjecture

is that the (free-)energy exponent θ satisfies the inequal-
ity θ < ds/2. Therefore, a small change of temperature can
ruin the balance between energy and entropy. In particu-
lar, the ground state becomes unstable at finite tempera-
tures due to the gain in entropy, and is transformed into a
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‘new’ equilibrium state that it is completely uncorrelated
with the ground state beyond the overlap length,

ξ∆T
L0
∝
(
kB∆T

Υ

)−ζ
, (2)

where ζ = 1/(ds/2− θ). It is conjectured that this kind of
first-order like phase transitions occur continuously within
the whole temperature range below Tc.

2.2 Domain growth

Within the droplet picture[5], the aging of spin-glasses
that starts from an out-of-equilibrium initial condition is
thought of as a coarsening process, where the domain walls
between the two equilibrium states progressively disap-
pear. The coarsening is driven by successive nucleation
and annihilation of droplets. From (1), the typical size of
droplet which can be thermally activated within a given
time scale t is expected to scale as,

LT (t) = L0

[(
kBT

Υ
log
(
t

τ0

))]1/ψ

. (3)

Thus the mean separation of the domain walls after time
t starting from a random initial condition is also expected
to be given by (3).

While there is no experimental way to observe di-
rectly such a domain growth in spin-glasses, AC mag-
netic susceptibility can be a useful probe. In the droplet
picture, the AC susceptibility at frequency ω is consid-
ered to be proportional to the inverse of the stiffness Υ
of droplet excitations whose size is LT (ω−1). During ag-
ing, the excitation energy gap and hence the effective stiff-
ness is smaller than in complete equilibrium because some
droplets of size LT (ω−1) can happen to share their sur-
face with the “frozen-in” droplet of size LT (t), and lower
their energy. Using scaling arguments, the resultant reduc-
tion of the stiffness is obtained as ∆Υ (LT (ω−1), LT (t)) ∼
(LT (ω−1)/LT (t))d−θΥ . From the latter, the relaxation of
the out-of-phase AC susceptibility is obtained as,

χ′′(ω, tw) ∼ χ′′(ω,∞)

[
1−

(
LT (ω−1)
LT (tw)

)d−θ]−1

, (4)

where χ′′(ω,∞) is the equilibrium susceptibility. For an
experimental analysis of the AC-susceptibility based on
this scaling ansatz, see [76]. Some related analysis was
performed also in numerical simulations of the Edward-
Anderson spin-glass model [80,82]. However, the following
analysis will not depend on the detailed shape of (4), but
rather on the existence of some general (inverse) relation
between the AC-susceptibility and the typical size of the
non-equilibrium droplets.

2.3 Separation of time and length scales

An important consequence of thermally activated dynam-
ics is that it induces a natural hierarchy of time scales (at a

given temperature) and a strong separation of time scales
(between different temperatures)[23]. The latter is very
useful to understand the temperature cycling experiments
in spin-glasses. Due to the Arrhenius law, the time needed
to cross a certain energy barrier can be extremely differ-
ent at two different temperatures, say T and T +∆T . The
time tT needed at temperature T to jump over a barrier
crossed at time tT+∆T at temperature T+∆T is given by:

tT = τ0

(
tT+∆T

τ0

)1+∆T/T

, (5)

or:

log
(

tT
tT+∆T

)
=
∆T

T
log
(
tT+∆T

τ0

)
. (6)

The number of decades separating tT and tT+∆T is thus
equal to the number of decades separating tT+∆T and τ0
times ∆T/T . In experiments, the latter is typically 15 or
so, so that a 10% temperature change multiplies the time
scales by 30. Note that this separation is much weaker
in numerical simulations, where the number of decades
separating tT+∆T and τ0 is ∼ 5.

It is also useful to consider the separation of length
scales. Let us consider two temperatures T and T +∆T .
The ratio of the length scale explored at the two temper-
atures within the same time, say tw, is obtained from (3)
as,

LT+∆T (tw)
LT (tw)

=
(

1 +
∆T

T

)−1/ψ

. (7)

One should note that the latter formula does not imply
strong separation of length scales: in order to have appre-
ciable separation of length scale, ∆T must be comparable
to T itself.

Finally it should be remarked that the time/length
separation is even more sharp in reality because the typ-
ical energy barriers grow when the temperature is de-
creased [50]. This can be interpreted as a growth of the
stiffness [5,51,81,82] as,

Υ ∼ J |1− T/Tc|ψν . (8)

3 Coarsening towards different equilibrium
states

We now start to consider the possible dynamical conse-
quences of the chaos effect within the droplet picture.
Because we have in mind the temperature-cycling exper-
iments in spin-glasses, we consider coarsening dynamics
under cycling of the underlying equilibrium state. In this
section we discuss intuitively how and when a succession
of coarsening with respect to different states can create
and store in memory the domain structures of all of them.
Some essential aspects of the picture will be verified quan-
titatively in the following sections, based on some analyt-
ical and numerical study of the Mattis model.
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To be specific, let us consider an Ising spin model on
a lattice in which a spin at site i is Si. We denote an
equilibrium state as α and consider that it consists of a
spin-configuration σαi where σαi takes ±1 randomly with
zero mean. It is convenient to introduce a projection of a
spin configuration Si to the equilibrium state σαi as,

S̃αi = σαi Si. (9)

Projections to two different ground states say {σαi } and
{σβi } are related as

S̃αi = σαi σ
β
i S̃

β
i . (10)

If a uniform external magnetic field huni is applied to
the system, the Zeeman energy becomes,

huni

∑
i

Si =
∑
i

h̃αi S̃
α
i , (11)

where we introduce a random field h̃αi defined as,

h̃αi = huniσ
α
i . (12)

In the following, we suppose that the equilibrium state at
temperature TA is a certain configuration α = ±A, and
at temperature TB is a different configuration α = ±B;
we suppose that the two states A and B are completely
uncorrelated beyond the overlap length ξ∆T .

Concerning experiments, it should be noted that tem-
perature is controlled within certain finite resolution δT .
Thus the overlap length associated with the limited accu-
racy should be large enough compared with the dynamical
length scales explored within some laboratory time scales.
Otherwise, neither isothermal aging nor ‘cycling’ can even
be achieved.

3.1 Mattis model

It will be useful to study a specific model which allows
coarsening towards various equilibrium states in a trans-
parent way. In later sections (Sects. 4 and 5), we analyze
in detail the so called Mattis model [56],

H({S}) = −J
∑
i,j

S̃αi S̃
α
j −

∑
i

h̃αi S̃
α
i . (13)

As one can see easily, this model clearly has the spin-
configuration S̃αi ≡ ±1 as ground states (for huni = 0).
Since this model is equivalent to ferromagnetic models,
the relaxational dynamics at low temperatures is nothing
but the progressive coarsening of the equilibrium states
[52]. In order to implement the droplet picture more pre-
cisely, one could introduce some disorder to the coupling
parameter J in order to have thermally activated dynam-
ics due to pinning of domain walls [57]. The latter does
lead to slow growth of the domain as in (3). However, we
will not perform specific analysis of the decorated model
in the present paper.

In Section 4, we study coarsening of the Mattis model
in the spherical limit approximation for general spatial di-
mension d, and obtain a fully analytical solution, which we
confirm in Section 5 by a zero-temperature Monte Carlo
simulation of the Mattis model in two-dimension (d = 2).

3.2 A cycle on a symmetry broken state

We begin with a simple cycling procedure between TA and
TB, which provides the basic intuition about the coarsen-
ing process where the target equilibrium state is cycled.
We first grow the B phase with A as the initial configu-
ration, and then revert to A as the target state.

3.2.1 Noise imprinting

The coarsening towards B given A as the initial configura-
tion is a standard coarsening process, because A is simply
a random configuration with respect to B: the projection
S̃Bi (t = 0) is random in sign with short range correlation
only up to ξ∆T . We focus on how the symmetry-broken
state A is affected by this process.

After time t, the spin-configuration {Si(t)} has coars-
ened with respect to B: the spatial pattern of the projec-
tion {S̃Bi (t)} consists of domains of B and −B separated
by domain walls. The typical distance between the domain
walls is LTB (t), and increases with time t. (The growth law
LT (t) depend on temperature T in spin-glasses (see (3)).)
The correlation between the configuration at time t� τ0
and the initial configuration is given by:

C(t, 0) = (1/N)
∑
i

Si(t)Si(0) ∼ (LT (t)/ξ∆T )−λ. (14)

The last equality is a general property of coarsening sys-
tems, and defines the non-equilibrium dynamical exponent
λ [52]. Note that we have included the effect of short-range
spatial correlations given by ξ∆T in the initial condition.

Now let us consider the projection of the spin-
configuration {Si(t)} onto the initial state A. We expect
that the projection {S̃Ai (t)} are random numbers with
only short-ranged spatial correlation. The mean value,
however, is nothing but the staggered magnetization ρA
with respect to A which is non-zero. Indeed:

ρA(t) ≡ (1/N)
∑
i

S̃Ai (t = 0)S̃Ai (t)

= C(t, 0) ∼ (LTB (t)/ξ∆T )−λ, (15)

where we have used the initial condition {S̃Ai (0) ≡ 1}, and
the simple identity Si(t)Si(0) = S̃Ai (t)S̃Ai (0).

To summarize, if one starts from a completely sym-
metry broken state A, the coarsening with respect to a
different state B adds some noise to A, and reduces the
magnetization to ρA(t) which decreases with t. However
it is very important to note that for any finite time t the
bias is non-zero: the symmetry between A and −A re-
mains broken.

3.2.2 Noise cleaning

We now revert back to A as the target state, and evolve the
configuration {Si(t)} obtained above. The initial configu-
ration is a random configuration with small bias ρ = ρA(t)
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given in (15). Obviously the symmetry-broken state A
should be finally restored, because the bias is present. An
important question is the time is needed for the recovery.

If the bias ρ has been made sufficiently small, the coars-
ening with respect to A proceeds for a long time almost
as if the initial condition was un-biased random configu-
ration with short-range correlation of order ξ∆T : both the
majority (A) and minority (−A) phase coarsen. From the
initial condition {Si(t)} the correlation behaves as (14)
for a long time. However, in the large time limit, this cor-
relation has to converge to ρ since the state A is finally
recovered. The matching between the two regimes allows
one to obtain the recovery time τrec as:(

LTA(τrec(ρ))
ξ∆T

)−λ
∼ ρ. (16)

This is the characteristic time around which the
symmetry-broken state is almost recovered.

The fact that coarsening with a biased initial condi-
tion dies out after a finite time scale has been analyzed
analytically in the O(n) model.[53] The mechanism is sim-
ilar to the interruption of coarsening under finite magnetic
field studied analytically in the relaxational dynamics of
the spherical Sherrington-Kirkpatrik mean field spin-glass
model [54].

Now combining (15) and (16), we find a simple relation
between the recovery time τrec of a symmetry-broken state
and coarsening time t with respect to an unrelated phase,

LTA(τrec) ∼ LTB (t). (17)

Note that the role of the overlap-length ξ∆T does not ap-
pear explicitly.

Here an important point in spin-glasses is that the time
τrec can be extremely different from t due to the strong
separation of time scales (5) discussed above:

τrec = τ0

(
t

τ0

)TB/TA
. (18)

In the case of negative cycling TA → TB < TA, the re-
covery time τrec can be much shorter than the coarsening
time t. Conversely, for positive cycling TA → TB > TA,
the recovery time τrec can be much larger than t.

3.3 Double coarsening in one step cycling

We now extend the two stage process discussed above to
the following three stage process: we first coarsen the sys-
tem towards A for time tw1 starting from a totally random
initial configuration, unrelated to both A and B. Subse-
quently, we take B as the target state for a time tw2, and
finally coarsen again towards A for time tw3. In spirit, this
corresponds to the one-step temperature-cycling protocol
used in experiments [7,8,12]. The results of the previous
section corresponds to the limit where tw1 →∞.

Fig. 1. Projection of the spin configuration onto the ground
state A at end of the first stage (t = tw1). The picture is
obtained by a zero-temperature Monte Carlo simulation of the
2-dimensional Ising Mattis model. The initial condition is a
random initial configuration and the duration of the first stage
is chosen to be tw1 = 1000 MCS.

3.3.1 First and second stage

In the first stage, domains of A and −A grow in compe-
tition with each other. After time tw1, the mean distance
between the domain walls is LTA(tw1), that we suppose
much larger than any microscopic length scale L0 and the
overlap-length ξ∆T . In Figure 1 we show a picture of the
domain structure of a two-dimensional Ising Mattis model
(see Sect. 5) during coarsening.

Subsequently the system coarsen towards B. Since the
spin configuration obtained by the first stage is a random
initial configuration with respect to B, coarsening of the
domains of B and −B starts from the overlap length ξ∆T .
After time tw2, the mean separation of the domain walls
is LTB (tw2) (see the upper figure of Fig. 2).

An interesting way to monitor the time evolution of
the spin configuration during the second stage is to use
its projection onto A (see the lower figure of Fig. 2). Re-
member that at the end of the first stage, the spin config-
uration is divided into domains of A and −A separated by
domain walls at a distance LTA(tw1) from each other. Let
us consider such a domain as a window cell to monitor the
time evolution of the projection onto A during the second
stage. Within such a cell, the initial spin configuration is
completely polarized with respect either to A or to −A.
Then the subsequent time evolution of the spin configura-
tion in the bulk of such a cell should be the same as the
case discussed in Section 3.2.1. Thus we expect that the
projection to A within the cell becomes a random config-
uration beyond ξ∆T but with a remnant mean bias whose
sign is the same as at time tw1. The amplitude of the bias,
however, decreases in magnitude as in (15).

To summarize, after time tw2 of the second stage,
the projection onto A (or −A) is a random configuration
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Fig. 2. The spin-configuration of the Ising Mattis model after
the second stage of coarsening towards a state B, completely
uncorrelated with A (ξ∆T = 1). The duration is chosen to be
tw2 = 20 MCS, much less than tw1. The upper figure is the
projection onto B whereas the lower figure is the projection
onto A. One can compare the lower figure with Figure 1 and
clearly distinguish the ‘ghost domain’ structure.

beyond ξ∆T but with a remnant local bias,

ρ2 ∼ (LTB (tw2)/ξ∆T )−λ. (19)

The remarkable point is that the spatial structure of the
sign of the bias, coarse-grained over the length LTA is the
same as at the end of the first stage. The ‘real’ domain
walls of size LTA which separate A and −A at the end
of the first stage have been destroyed. However, the ‘sign’
of the bias retains the very same spatial structure. For
convenience, we call the latter ‘ghost’ domains. This is the
mechanism to install and conserve memory of the thermal
history of the system in the present picture.

3.3.2 Third stage

In the third stage, the state A is restored as the target
state, given the final configuration of the second stage as

the new initial condition. We continue to monitor the spin
configuration using the window cell defined above, of size
LTA(tw1). From the discussion in Section 3.2.2, coarsening
of A and −A re-starts within the cell. Let us call this
regime the inner-coarsening regime.

How long does this inner-coarsening regime last? Sup-
pose that the size of the cell LTA(tw1), which is the typ-
ical length of the spatial structure of the bias field, can
be regarded as large enough so that the situation is essen-
tially the same as with an infinitely large system with
biased random initial condition (see Sect. 3.2.1). The
inner-coarsening finishes at a recovery time related to the
strength of the bias as given as (16). However if the size of
the cell LTA(tw1) is small the inner-coarsening will be in-
terrupted when the size of the new domains reaches that
of the cell. The condition separating these two regimes
reads:

a) ρ
−1/λ
2 � LTA(tw1)/ξ∆T

b) ρ
−1/λ
2 � LTA(tw1)/ξ∆T (‘finite size effect’). (20)

Thus we obtain the life time τrec of the inner-coarsening
regime as,

LTA(τrec)/ξ∆T ∼ min(ρ−1/λ
2 , LTA(tw1)/ξ∆T )

or τrec = min

(
τ0

(
tw2

τ0

)TB/TA
, tw1

)
. (21)

Let us consider the case a) more closely. In this case, a nat-
ural expectation is that after time τrec, the magnitude of
the polarization (bias) within the bulk of the cell is almost
fully recovered. The latter implies that the ‘ghost’ do-
mains of sizes LTA(tw1), which are the trace of the real
domain constructed in the first stage, become the ‘real’
domains again. The retrieved domain will then re-start to
grow just as the continuation of the 1st stage. We call this
regime as outer-coarsening regime.

An important feature is that the domain pattern re-
trieved after the time τrec � tw1 will remain almost frozen
in the interval [τrec, tw1] (see Fig. 3). Thus there is a clear
separation between the inner-coarsening regime and outer-
coarsening regime, when the retrieved domain structure
expands appreciably. We call this intermediate regime the
plateau regime. This is the mechanism which allows re-
trieval of the memory of the thermal history of the system
in the present picture.

Next let us consider the case b). In this case, the
noise on the ‘ghost domain’ is too large and the inner-
coarsening finishes only at around τrec ∼ tw1. The
crossover from inner-coarsening to outer-coarsening takes
place very smoothly and there is no plateau regime. In this
case ‘memory’ cannot be retrieved because it is impossible
to recover the amplitude of the bias with its spatial struc-
ture frozen: the shape of the domain at around τrec ∼ tw1

will be already different from installed one.
To summarize, the separation of the inner-coarsening

and outer-coarsening regime is different in the case a) and
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Fig. 3. The projection of the spin configuration onto the
ground state A in the third stage of coarsening. The snap-
shot is taken after 20 MCS in the 3rd stage. Comparing with
Figure 1 and Figure 2, one can find that the ‘ghost domains’
have become the ‘real domains’ again. The duration of the sec-
ond stage (20 MCS) is chosen to be much smaller than that of
the first stage (1000 MCS) so that the plateau regime exists.

b). Combining (20) and (21) we obtain,

a) Wide separation: LTA(τrec)� LTA(tw1)
b) No separation : LTA(τrec) ∼ LTA(tw1). (22)

Remember that the amplitude ρ2 of the bias is related to
the duration of the second stage tw2 through (19). Com-
bining the latter with the classification (22) we obtain a
very simple condition:

a) Wide separation: LTB (tw2)� LTA(tw1)
b) No separation : LTB (tw2) ∼ LTA(tw1). (23)

Thus the separation between the inner- and outer-
coarsening regimes in the third regime depends on relative
domain size in the first and second stages.

Finally, let us note for completeness what is happen-
ing on the projection onto B during the 3rd stage: the
projection onto B is becoming more and more noisy but
still the ‘ghost domains’ of size LTB (tw2), which is the
remnant of the ‘real domains’ of B created in the second
state, remain.

3.4 AC susceptibility in one step cycling

It is useful to consider how the double coarsening can
be observed through the AC susceptibility. Within the
droplet picture, the relaxation of the AC susceptibility
is due to the decrease of the domain wall density (see
Sect. 2.2). The specific scaling form (4) is derived for stan-
dard isothermal aging where L(tw) is the size of the do-
main monotonically increasing with time. In the case of
the one step cycling, we only need to replace L(tw) by the
relevant domain size.

t

χ’’ ω;( t)

t
w1

w2

recτ

t

A
B

A

Fig. 4. Schematic behavior of the relaxation of the out-of-
phase AC-susceptibility in an one-step cycling procedure. The
thick dotted line is the reference curve which is the direct con-
tinuation of the first stage. ‘A’ and ‘B’ indicate which equilib-
rium state is coarsening.

In the first stage (0 < t < tw1) , the susceptibility
simply decays as standard aging (4) where the relevant
size of the domain is that of the A phase LTA(t). In the
second stage (tw1 < t < tw1 + tw2), the relevant domains
are that of the B phase so the relevant length scale is now
LTB (t − tw1). Thus the relaxation re-starts and there is
a discontinuity at t = tw1, as clearly observed in many
experiments [7,8,12].

In the previous section, we argued that the third stage
(tw1+tw2 < t) can be divided into two asymptotic regimes,
namely, an inner-coarsening regime for (tw1 + tw2 < t �
tw1 + tw2 +τrec) and an outer-coarsening regime for (tw1 +
tw2 + τrec � t).

In the inner-coarsening regime, the relevant size of do-
main is LTA(t − tw1 − tw2). Thus the relaxation of the
AC-susceptibility re-starts and there is again a disconti-
nuity at t = tw1 +tw2. This feature can be observed only if
the frequency ω of the AC field is large enough compared
with the inverse lifetime of the inner-coarsening regime,

ω−1 � τrec. (24)

On the other hand, in the outer-coarsening regime the rel-
evant domain is that of the revived ghost domains. Thus in
the latter regime, the relevant size of the domain is simply
LTA(t − tw2) and the relaxation of the AC-susceptibility
is the continuation of the first stage as if the second stage
were absent. This can be observed if the experiment is
continued up to large enough time tw3 compared with the
lifetime of the inner-coarsening regime,

tw3 � τrec. (25)

We summarize the generic behavior of the relaxation of
the out-of-phase AC-susceptibility in the one-step cycling
procedure in Figure 4. Here a very important remark is
that the strong separation of time scale (5) in spin-glasses
due to the activated dynamics can explain the strong dif-
ferences in the third regime between negative and posi-
tive cycling observed in experiment (this point was em-
phasized in [13,6]). In the case of negative cycling, the
outer-coarsening regime can be easily observed but the



374 The European Physical Journal B

lifetime of the inner-coarsening regime can be so short
that (24) is not satisfied. On the contrary, positive cycling
makes the inner-coarsening regime easily observed (reju-
venation) but its effect is rapidly too large to allow the
observation of some ‘memory’. As we will discuss later in
Section 6, the experimental data can be (at least qualita-
tively) interpreted along these lines.

3.5 Relaxation of DC susceptibilities after one-step
cycling

Another powerful experimental tool to study the
temperature-cycling process is the DC-magnetic suscepti-
bilities in the third stage of the one-step cycling. In a class
of experiments [7], very small magnetic field h is applied
during temperature-cycling T1(tw1)→ T2(tw2)→ T1(tw3).
The magnetic field is then cut-off at time

ttotal
w ≡ tw3 + tw2 + tw1 (26)

and relaxation of the magnetization (thermo-remanent
magnetization (TRM)) is measured subsequently at time
τ + ttotal

w with increasing τ in the third stage where the
temperature is kept to T1.

As far as linear-response holds, the magnetization can
be written as hχTRM(τ+ttotal

w , ttotal
w ) where we introduced

a dynamical DC-magnetic susceptibility. In another class
of experiments[12], the temperature cycling is done under
zero-field. Then a small magnetic field is switched on and
the growth of the magnetization (zero-field cooled mag-
netization (ZFC)) is measured. Again the magnetization
can be written as hχZFC(τ + ttotal

w , ttotal
w ) where we intro-

duced another dynamical DC-magnetic susceptibility. As
far as linear response holds, the TRM and ZFC are simply
related [12] as

χZFC(τ + ttotal
w , ttotal

w )

+ χTRM(τ + ttotal
w , ttotal

w ) = χZFC(τ + ttotal
w , 0). (27)

The rightside of the last equation is the magnetization
(divided by h) measured if the magnetic field is applied
from the beginning and afterwards. Experimentally such
a magnetization almost saturates to a constant which is
oftenly called as field cool (FC) magnetization. If one as-
sumes naively that the fluctuation dissipation theorem
(FDT) holds, the DC-susceptibilities (per spin) are re-
lated to auto correlation function C(τ + ttotal

w , ttotal
w ) ≡

〈m(τ + ttotal
w )m(ttotal

w )〉 of magnetization m(t) (per spin).
Assuming that the correlation function is normalized as
C(t, t) = 1 one finds the ZFC susceptibility as,

χZFC(τ + ttotal
w , ttotal

w ) = (kBT )−1(1− C(τ + ttotal
w , ttotal

w )).
(28)

and the TRM susceptibility χTRM(τ + ttotal
w , ttotal

w ) is re-
lated via (27).

Let us now consider the one-step cycling protocol. Sup-
pose that the magnetic field is applied during the 1st
and 2nd stage and then cut-off right at the beginning of

the third stage, i.e. tw3 = 0 so that ttotal
w = tw2 + tw1.

Then TRM magnetization at time τ + ttotal
w = τ + (tw2 +

tw1) should relax with increasing τ just like the auto-
correlation function between the magnetization right at
time tw2 + tw1 and that after time τ later. From the dis-
cussions in the previous sections, we expect that auto-
correlation function will be generically the following,

C(τ + (tw2 + tw1), tw2 + tw1) =
C0(τ, 0) L(τ)� L(τrec(ρ)) inner-coarsening

(29)
ρC0(τ + tw1, tw1) L(τ)� L(τrec(ρ)) outer-coarsening,

(30)

where C0 is the auto-correlation function in the standard
coarsening (14) and ρ is the amplitude of the ghost domain
right after the 2nd stage, which decreases for larger tw2.
We have confirmed the above feature analytically within
the spherical Mattis model (see Fig. 6) in Section 4.5 and
numerically in two-dimensional Ising Mattis model (see
Fig. 9) in Section 5. It is interesting to note that quite
similar features have also been obtained within the dy-
namical mean-field theory [31] in the sense that the effect
of the second stage amounts to a reduction of the plateau
value qEA at which the rejuvenation and memory effects
are separated.

Here we are assuming the case a) L(tw1) � L(tw2)
which allows clear separation between the inner- and
outer-coarsening regimes. The initial decay is that due
to the inner-coarsening regime, (L(τ) � L(τrec)) where
the correlation decays as if the memory of the first stage
was completely lost. The remarkable feature is the plateau
regime L(τrec) � L(τ) � L(tw1), where the correlation
function stays almost constant. The subsequent drop is
due to the outer coarsening L(tw1)� L(τ) where the cor-
relation function decays as if the second stage is absent.
But here the amplitude is reduced from 1 to ρ. Note that
in the limit L(tw1) → ∞, the second relaxation does not
occur C0(τ + tw1, tw1) = 1. The latter is the same as the
case of a cycling on a symmetry broken state discussed in
Section 3.2.2.

In the previous TRM experiments [7], the field change
is made not right at the beginning of the third stage
but slightly afterwards when some additional time tw3

is spent in the third stage. The auto correlation cor-
responding to the DC-magnetic susceptibilities is now
C(τ+ttotal

w , ttotal
w (= tw3+tw2+tw1)) with non-zero tw3 > 0.

The behavior becomes more complicated because the noise
is already removed to a certain extent during the addi-
tional period tw3 thus the effect of rejuvenation tends to
be obscured. Nonetheless we explicitly compute such an
auto-correlation function in Section 4.5 and later compare
with experimental curves in Section 6.

Finally let us note that standard FDT assumed above
naively does not hold in non-stationary dynamics as the
one we are concerned here. It is by now well known
[27,29,30] that in spin-glass systems one should con-
sider modified forms of FDT. As compared with the
AC-susceptibility discussed in the previous section, DC-
susceptibilities contain integral contributions of wider
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range of the non-stationary parts of the response function
where the standard FDT is very likely violated. Unfortu-
nately, the conventional droplet picture [2,5] is not able
to take into account strongly non-stationary part of re-
sponses in spin-glasses. Recent progress of the dynamical
mean-field theories [27–29] suggests that it can be quite
different from usual coarsening systems. Nonetheless, qual-
itative features of relaxation curves of auto-correlation
functions and DC-magnetic susceptibilities, such as the
waiting time effects, are known to be very similar in the
case of isothermal aging. The latter implies that qualita-
tive feature discussed above concerning the relaxation af-
ter temperature-cycling also applies for the DC-magnetic
susceptibilities.

3.6 Multiple coarsening in multiple step cycling

One can naturally extend the one step cycling to multiple
steps cycling of the equilibrium states which try to mimic
continuous temperature-cycling experiments [12,15]. For
example, let us consider the coarsening of three different
equilibrium states A, B and C which take place in turn as
A→ B → C with durations tw1, tw2 and tw3 respectively.
Since we are interested with large time behaviors, we dis-
regard the differences between the corresponding overlap
lengths and simply set them to the microscopic length L0.
At the beginning of each stage, a new coarsening process
is started. After the first, second and third stages, the
domain sizes of A, B and C are LTA(tw1), LTB (tw2) and
LTC (tw3) respectively.

Let us consider the noise imprinted on the projected
configuration (onto the reference state) due to the coarsen-
ing of unrelated phases. The second stage reduces intensity
of the bias of the A phase from 1 down to ρA(tw1 + tw2) ∼
(LTB (tw2)/L0)−λ. Similarly, the third stage reduces the
bias of the B phase down to, ρB(tw1 + tw2 + tw3) ∼
(LTC (tw3)/L0)−λ. An interesting question is how the third
stage influences the projection onto the A phase. A natu-
ral expectation is that the noise effect is multiplicative1,

ρA(tw3 + tw2 + tw1) ∼ ρA(tw1 + tw2)(LTC (tw3)/L0)−λ

∼ (LTB (tw2)/L0)−λ(LTC (tw3)/L0)−λ. (31)

To summarize, we obtain a ‘real’ domain of phase C with
size LTC (tw3) and ‘ghost’ domains of phases A and B,
with sizes LTA(tw1) and LTB (tw2) respectively but with
reduced intensities. Thus the information of all the three
phases are now stored in the spin configuration but with
noises due to random interferences.

Now let us consider how we can retrieve memories in-
stalled above by removing the noise that blurred stored
information. Here we have to remember that memory
can be retrieved by additional conjugate coarsening but
only in the case a): when the noise is small enough
(see (20–23)).

1 We explicitly verify this relation within the O(n) Mattis
model in Appendix B.
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Fig. 5. Schematic behavior of the relaxation of the out-of-
phase AC-susceptibility in a two-step cycling procedure. Thick
dotted lines are the reference curves which show direct contin-
uation of the second and first stages. ‘A’, ‘B’ and ‘C’ indicate
the equilibrium states which are coarsening.

To be specific, let us suppose that the previous coars-
ening of A, B, and C is done in a well separated
manner in the sense that tw1 � τ0(tw2/τ0)TB/TA and
tw2 � τ0(tw3/τ0)TC/TB . Then let us consider reversed or-
der coarsening of the above procedure. First, we perform
coarsening of B with durations t′w2 given the final spin
configuration obtained above. According to the result of
the previous section, it is sufficient to choose the dura-
tion t′w2 ∼ τrec = τ0(tw3/τ0)TC/TB to remove the noise on
B due to C and recover the spin configuration just be-
fore the coarsening of C. We will not choose a larger t′w2
in order to avoid the outer-coarsening of B which adds
some additional noise to A, which will be treated later.
Second we perform coarsening of A. By the same argu-
ment, it will be again enough to choose its duration as
t′w1 ∼ τrec = τ0(tw2/τ0)TB/TA .

If one skips the 2nd coarsening of B and try to remove
the noise by doing only the 2nd coarsening of A, the time
need for the recovery τrec will become astronomically
large,
(L(τrec)/L0)−λ = ρAρB or

τrec = τ0(tw2/τ0)(TB/TA)(TB/TA) log(tw3/τ0) (32)

Thus it is very important that the multiplicative noise is
cured in two steps and not by a single stroke.

More generally one can perform successive coarsening
of arbitrary number of phases A1 → A2 . . . → An with
durations tw2, tw3, . . . , twn followed by the reversed pro-
cesses An−1 → An−2 . . .→ A1 with durations t′n−1, t′n−2,
. . . , t′1. The retrieval of the memory of each phase is en-
sured by the condition,

ti � τ0(ti+1/τ0)Ti+1/Ti t′i ∼ ti. (33)

Note that this can be easily realized in a negative cycling.
The domain structures of all the phases will be retrieved
one after another2. The behavior of the AC-susceptibility
during such a multi-step (continuous) cycling will be in-
teresting. The generic behavior will be ‘hierarchical’ as de-
picted schematically in Figure 5. In Section 6, we discuss

2 The phases of large i which are recovered earlier become
noisy again as phases of smaller i are treated later.
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recent continuous temperature-cycling experiments from
this point of view.

4 The O(n) mattis model

In the previous section we discussed the peculiar proper-
ties of coarsening under a cycling of the equilibrium states,
based on scaling and heuristic arguments. In this Section
we study the Mattis model introduced in Section 3.1 in the
spherical limit. This allows us to explicitly solve the dy-
namical equation under one-step cycling of the equilibrium
states and check in details the physical picture presented
in the above sections. This section is rather technical and
can be skipped at first reading (the previous section is
indeed the summary of the study in the present section
and Sect. 5). The reader interested by a more physical
discussion can go directly to Section 6.

4.1 Model and definitions

4.1.1 Dynamics of projection field

Here we generalize the projection field S̃ to be a
n-dimensional vector field φ(x, t) continuously varying in
a d-dimensional space. The time evolution of the projec-
tion field φ(x, t) is given by the time dependent Ginzburg-
Landau (TDGL) equation,

∂φ

∂t
= −

δF[φ]

δφ
, (34)

with the free-energy functional defined as,

F[φ] =
∫

ddx
[

1
2

(∇φ)2 + α
(n− |φ|2)2

4n

]
. (35)

Here we disregard the Langevin force due the to thermal
noise on the dynamics because the latter is irrelevant in
the present model [52].

In the spherical limit n → ∞, under the assumption
of self-averageness, any one of the component satisfies,

∂φ

∂t
= ∇2φ− z(t)φ, (36)

with

z(t) = µ(1− 〈φ2(t)〉), (37)

where 〈...〉 means expectation value. Thus we only need
to consider a single component, i.e. a scalar field in the
following.

4.1.2 Random equilibrium states

We suppose that the equilibrium configuration is repre-
sented by a random scalar field σ(x). The spin configura-
tion ψ(x) is related to the projection field as,

ψ(x) = σ(x)φ(x), (38)

which is equivalent to the relation (9) on the lattice. We
assume that σ(x) is a Gaussian random scalar field with
zero mean,

〈σ(x)〉σ = 0 (39)

and short-ranged spatial correlations,

〈σ(x)σ(x′)〉σ = ∆δd(x− x′). (40)

The latter means that we essentially disregard the finite-
ness of the overlap length (2). One could include this effect
by introducing a short-range correlated Gaussian field.
However since we are focusing on large time behavior, we
do not go into such details in the present paper.

As for the lattice case (10), the projections to different
equilibrium states, say α and β, are related as,

φα(x) = σαβ(x)φβ(x). (41)

where we defined a ‘transformation field’,

σαβ(x) ≡ σα(x)σβ(x). (42)

The transformation field should be also a random field
with zero mean,

〈σαβ(x)〉σ = 0 (43)

and short-ranged correlation,

〈σαβ(x)σαβ(x′)〉σ = ∆δd(x− x′). (44)

More generally we have,

〈σα1α2(x1)σα2α3(x2) . . . σαn−1αn(xn−1)σαnα1(xn)〉σ =

∆nδd(x1 − x2)δd(x2 − x3) . . . δd(xn−1 − xn). (45)

Some useful statistical properties of the transformation
field are presented in Appendix A.

4.1.3 Formal solution

Taking Fourier transform φ̂k =
∫

ddxφ(x)eikx, one finds
the formal solution to the TDGL equation (36) as,

φ̂k(t) = φ̂k(t′)
e−k

2(t−t′)√
Γ (t, t′)

, (46)

where we introduced

Γ (t, t′) = exp
(

2
∫ t

t′
dt′z(t′)

)
. (47)

Note that details of the solution are absorbed in Γ (t, t′).
By definition one must have the identity,

Γ (t, t) = 1. (48)

To simplify our calculation, we consider µ→∞ to enforce
the normalization of the magnitude of spin at any position
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in space and time: φ2(x, t) ≡ 1 [68]. In Fourier space, the
latter implies that the formal solution can be written as,

φ̂k(t)φ̂l(t) = (2π)2dδd(k + l)Wk(t), (49)

Here Wk(t) should satisfy,∫
ddk Wk(t) = 1. (50)

Note that Wk(t) is the structure-factor of the projection
field. The factor Γ (t, t′) (or equivalently z(t)) can be deter-
mined self-consistently so as to satisfy the normalization
condition φ(x, t)2 = 1,

Γ (t, t′) =
∫

ddk
(2π)d

ddl
(2π)d

e−k
2(t−t′)e−l

2(t−t′)〈φ̂k(t′)φ̂l(t′)〉

=
∫

ddke−2k2(t−t′)Wk(t′). (51)

Then the structure-factor (49) at time t is obtained for-
mally as

Wk(t) = Wk(t′)
e−2k2(t−t′)

Γ (t, t′)
· (52)

4.1.4 Physical observables

The properties of coarsening systems can be well char-
acterized using correlation functions. Given a structure-
factor (49) at a certain time s, the auto-correlation func-
tion for two times t > t′ > s can be formally computed as,

C(r, t, t′) = 〈φ(r, t)φ(0, t′)〉

=
∫

ddk
e−k

2((t−s)+(t′−s))eikrWk(s)√
Γ (t, s)

√
Γ (t′, s)

· (53)

In particular, the equal-time t′ = t spatial correlation
function is obtained simple as the inverse Fourier trans-
form in space of the structure factor Wk(t),

C(r, t, t) =
∫

ddkeikrWk(t). (54)

Another important quantity is the local auto-correlation
function,

C(r = 0, t, t′) =
Γ ((t+ t′)/2, s)√
Γ (t, s)

√
Γ (t′, s)

· (55)

In the following we denote the (local) auto-correlation
function C(r = 0, t, t′) as C(t, t′) for simplicity. Since
coarsening is a non-stationary dynamics, the correlation
functions depend not only on the time difference t − tw
but explicitly on the two times t and tw. This feature is
called ‘waiting time effect’ or ‘violation of time transla-
tional invariance’.

In addition to the correlation functions, linear-
response functions are also very interesting to study. In
the spin-glass experiments, the measurement of the linear-
response such as AC magnetic susceptibility is one of the
only detailed probe for the dynamics. In Appendix C we
present the formal solution for the linear-response func-
tion of the O(n) Mattis model to uniform external field.

4.2 Standard coarsening

Before studying coarsening under cycling of equilibrium
states, let us review some essential results in the case of
standard coarsening, i.e. coarsening with un-biased ran-
dom configuration with short-range correlation. The solu-
tion is well known and studied in detail [52].

Let us choose the random initial condition as,

〈φ̂kφ̂l〉ini = ∆(2π)dδd(k + l), (56)

which is equivalent to

〈φ(x)φ(x′)〉ini = ∆δd(x− x′). (57)

The latter means the structure-factor (49) is flat (white
noise) at the beginning,

Wk(0) =
∆

(2π)d
· (58)

Then the solution is obtained using (51) as,

Γ0(t, 0) =
∆

(2π)d

∫
ddke−2k2t =

(
t

τ0

)−d/2
∼ (L(t)/L0)−2λ, (59)

where we defined a microscopic time scale τ0 = ∆2/d/(8π).
Note that this expression is valid for large enough time
separation t compared with τ0. In the limit t = 0 we must
have the identity (48). For the definition of L(t) and the
exponent λ in the last equation see (61) and the following.

The correlation functions can be obtained using (54,
55, 58). The spatial correlation function at equal-time be-
comes,

C0(r, t, t) = 〈φ(r, t)φ(0, t)〉 =
∆

(2π)d

∫
ddk

e−2k2teikr

Γ0(t, 0)

= exp
(
−r

2

8t

)
≡ exp

[
−
(

r

L(t)

)2
]
, (60)

In the last equation we introduced a characteristic length
scale,

L(t) ∝ L0

√
t, (61)

where L0 is some microscopic unit of length. Although
there are no topological defects like domain walls in the
spherical limit n → ∞, the latter characteristic length
scale plays the role of scaling variable as played by the
mean separation of domain walls in the systems with do-
main walls [52].

The correlation between the random initial configu-
ration and the temporary configuration at time t is ob-
tained as

C0(t, 0) = 〈φβ(t)φβ(0)〉

=
Γ (t/2, 0)√
Γ (t, 0)

= 2d/2(t/τ0)−d/4 ∼ (L(t)/L0)−λ. (62)
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The non-equilibrium dynamical exponent λ (see (14)) of
the O(n) model is known to be,

λ = d/2 O(n→∞) model, (63)

as one can see easily comparing with (61). More generally
the two-time auto-correlation functions is obtained as,

C0(t, tw) = 〈φβ(t)φβ(tw)〉 =
Γ ((t+ tw)/2, 0)√
Γ (t, 0)

√
Γ (tw, 0)

∼t�tw (L(t)/L(tw))−λ. (64)

Here the waiting time effect follows the L(t)/L(tw) type
scaling behavior as in many other coarsening systems [52].

4.3 A cycle on a symmetry broken state

Let us now begin to analyze the effect of cycling the equi-
librium states on coarsening with the simplest version
described in Section 3.2.1. Here we look at how the projec-
tion of the temporary spin-configuration onto an equilib-
rium state is progressively affected by the coarsening of a
completely unrelated phase. Subsequently we study in de-
tail how the noise induced by this process can be removed
progressively by performing the ‘conjugate’ coarsening.

4.3.1 Noise imprinting

Let us take a random ground state {σαi } as the initial con-
dition so that the symmetry is fully broken with respect
to α at the beginning,

φ̂
α

k (0) = (2π)dδd(k). (65)

We then perform coarsening with respect to a completely
unrelated ground state {σβi }. The initial condition should
look as a completely random configuration in the projec-
tion onto β. Due to (A.1) which is the Fourier transform
of (38) we find,

φ̂
β

k(0) =
∫

ddk′

(2π)d
(σ̂αβ)k′(2π)dδd(k + k′) = (σ̂αβ)k, (66)

Here (σ̂αβ)k is the transformation field defined in (A.2)
which is a Gaussian random field (see Appendix A). By
(A.3) and (A.4), one can check that the initial condition
for the coarsening with respect to β is indeed a random
initial condition with zero mean and short range correla-
tion as it should. The solution of the equation of motion
with such random initial condition is known as shown in
(59).

Let us monitor the time evolution of the spin-
configuration by projecting onto α through (A.1),

φ̂αk (t) =
∫

ddk′

(2π)d
(σ̂αβ)k′ φ̂

β
k−k′(t). (67)

Using the 2-body correlation function of (σ̂αβ)k shown in
(A.4), one finds that the resultant configuration have the
following properties.

First, it is easy to see that the k = 0 component of
the projection onto α has non-zero mean while the others
have zero mean,

〈φ̂αk (t)〉σ = (2π)dδd(k) ρ (68)

or

〈φ̂α(x, t)〉σ = ρ (69)

with

ρ = C0(t, 0) ∼ (L(t)/L0)−λ. (70)

The result means that the symmetry remains broken with
a weaker and weaker bias ρ as the coarsening time t with
respect the unrelated phase β increase. This feature has
been discussed in Section 3.2.1 (see (15)).

Second, the spatial correlation of the projection to α
can also be obtained as described in Appendix B. The
initial condition (65) implies that initial structure-factor
is Wα

k (0) = δd(k) in (49). Then from (B.12), we obtain
the correlation function as,

〈φ̂αk (t)φ̂αl (t)〉σ = (2π)2dδd(k + l)Wα
k (t), (71)

with the structure-factor,

Wα
k (t) = ρ2δd(k) +

∆

(2π)d
(1− 2ρ2 + e−k

2t/2). (72)

By taking the inverse Fourier transform one finds3,

〈φα(x, t)φα(x′, t)〉σ − 〈φα(x, t)〉σ〈φα(x′, t)〉σ =

∆δd(x− x′)[1− 2ρ2] + e−(x−x′)/2tρ2. (73)

To summarize, coarsening of unrelated phase produces es-
sentially short-ranged correlated random field with weak
bias as we expected in Section 3.2.1.

4.3.2 Noise cleaning

Let us stop the coarsening of the unrelated phase β at
time t = tw2 and see closely how the noise imprinted on
the projection field to α is removed by coarsening with
respect to α for some additional time tw3. Given φα(x, tw2)
obtained in the last stage as the initial condition for this
stage, the solution at time tw3 + tw2 is obtained as

φ̂αk (tw3 + tw2) = φ̂αk (tw2)
e−k

2tw3√
Γcycle(tw3 + tw2, tw2)

. (74)

3 In the derivation of the last equation we used Γ (t/4, 0) =
C2(t, 0) = ρ2 as one can check from (62) and (59).
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Here the factor Γcycle(tw3 + tw2, tw2) is obtained us-
ing (51, 72) and (59) as4,

Γcycle(tw3 + tw2, tw2) = ρ2 + (1− 2ρ2)Γ0(tw3, 0)
+ Γ0(tw3 + tw2/4, 0), (75)

with

ρ = C0(tw2, 0) ∼ (L(tw2)/L0)−λ. (76)

Here Γ0 is the one obtained in the solution for standard
coarsening (59) with un-biased random initial condition.

For the following analysis, it is useful to introduce the
relative ratios of the three terms in (75), which will find a
natural interpretation later:

m2
mem(tw3, tw2) = ρ2/Γcycle(tw3 + tw2, tw2), (77)

m2
rej(tw3, tw2) = (1− 2ρ2)Γ0(tw3, 0)/Γcycle(tw3 + tw2, tw2),

(78)

m̃2(tw3, tw2) = Γ0(tw3 + tw2/4, 0)/Γcycle(tw3 + tw2, tw2).
(79)

By definition the sum of the three is always 1.
Suppose that tw2 has been chosen to sufficiently large.

Then for small enough tw3 compared with tw2, mrej is
dominant,

m2
rej ' 1 or Γcycle(tw3 + tw2, tw2)

' Γ0(tw3, 0) ∼ (L(tw3)/L0)−2λ tw3 � τrec. (80)

here we used (59). On the other hand, at large enough
time tw3, mrej and m̃2 go to zero,

m2
mem ' 1

or Γcycle(tw3 + tw2, tw2) ' ρ2tw3 � τrec. (81)

The crossover between the two limits takes place when
the ratio m2

rej and m2
mem becomes of the same order (we

are assuming m̃2 � m2
rej). Then using (59) one finds the

crossover time τrec(ρ) as,

ρ ∼ (L(τrec(ρ))/L0)−λ. (82)

The above feature has direct consequences on the physical
observables.

First, let us consider the density of staggered magne-
tization. Using (68), it is obtained simply as,

〈φα(tw3 + tw2)〉σ =∫
ddk

(2π)d
e−k

2tw3√
Γcycle(tw3 + tw2, tw2)

〈φαk (tw2)〉σ

=
ρ√

Γcycle(tw3 + tw2, tw2)
= mmem(tw3, tw2). (83)

4 One can check that Γ (tw2, tw2) = 1 is satisfied since
Γ (tw2/4) = C2(tw2, 0) = ρ2 as one can check and Γ0(0, 0) = 1
because of the identity (48).

In the last equation we used the definition of
m2

mem(tw3, tw2) given in (77). Thus mmem(tw3, tw2) is the
staggered magnetization in the bulk, that will contribute
to the memory effect. The staggered magnetization starts
from ρ and saturates to the full moment 1 at time scales
large enough compared with τrec(ρ) defined in (82). It
means that the density of the minority phase shrinks and
the fully symmetry broken state is almost recovered within
a finite time scale.

Second, let us consider the equal time spatial correla-
tion function of fluctuation of the projected field around
the mean 〈φα(tw3 + tw2)〉σ,

δφα(r, tw3 + tw2) = φα(r, tw3 + tw2)− 〈φα(tw3 + tw2)〉σ.
(84)

Using (54, 52, 75) and (72) and (83) it is obtained as,

〈δφα(r, tw3 + tw2)δφα(0, tw3 + tw2)〉σ =∫
ddk

[
∆

(2π)d
(

1− 2ρ2 + e−k
2tw2/2

)]
× e−2k2tw3

Γcycle(tw3 + tw2, tw2)

= m2
rej(tw3, tw2) exp

(
− r2

8tw3

)
+ m̃2(tw3, tw2) exp

(
− r2

8(tw3 + tw2/4)

)
. (85)

In the last equation we used the parameters defined in
(78) and (79). This result should be compared with the
case of coarsening with un-biased initial condition (60).
For simplicity we assume that tw2 has been taken very
large so that the second term can be neglected. Then one
finds that at short enough time scale the amplitude of the
correlation function stays constant m2

rej ' 1 because of
(80). In this regime the behavior of the correlation func-
tion is essentially the same as in the usual case of coarsen-
ing with un-biased initial condition (60); this contribution
will therefore be associated to rejuvenation. The range of
correlation grows as,

〈δφα(r, tw3 + tw2)δφα(0, tw3 + tw2)〉σ '

exp

[
−
(

r

L(tw3)

)2
]

tw3 � τrec. (86)

At larger time scale compared with τrec, the amplitude
m2

rej vanishes because of (81) and the fluctuation disap-
pears, i.e. the system is ordered again,

〈δφα(r, tw3 + tw2)δφα(0, tw3 + tw2)〉σ ' 0 tw3 � τrec.
(87)

Finally let us consider the auto-correlation functions. The
simplest one which is useful is the correlation between the
configuration at the beginning of the final coarsening with
that at some later time. One easily obtains,

C(tw3 + tw2, tw2) =
Γcycle(tw3/2 + tw2, tw2)√
Γcycle(tw3 + tw2, tw2)

· (88)



380 The European Physical Journal B

This result should be compared with the case with zero
bias (62). One can easily see that at the beginning tw3 �
τrec where Γcycle(tw3+tw2, tw2) ' Γ0(tw3, 0) (80) holds, the
correlation function decreases as if starting from random
initial conditions without bias,

C(tw3 + tw2, tw2) ' C0(tw3, 0) ∼ (L(tw3)/L0)−λ

tw3 � τrec. (89)

On the other hand it saturates at large enough time scales
due to Γcycle(tw3 + tw2, tw2) ' ρ2, see (81), as

C(tw3 + tw2, tw2) = ρ tw3 � τrec. (90)

In Section 3.2.1, we expected this feature on general
grounds and used it to estimate the recovery time (16).

4.4 Double coarsening in one step cycling

Now we analyze the double coarsening process discussed
in Section 3.3 in the present specific model. We first let the
system coarsen towards the equilibrium state α for time
tw1 starting from a random initial condition (56). Then
we change the target state to β for a time tw2, given the
configuration obtained above as the initial configuration.
And finally, we switch back the coarsening towards the
original equilibrium state α for time tw3. Note that the
process we considered in the previous subsection can be
regarded as the special case of tw1 =∞.

4.4.1 The first and second coarsening

The first stage is the usual coarsening from random ini-
tial conditions. The structure-factor of the projection field
with respect to α after time tw1 is given in (58) which
reads,

Wα
k (tw1) =

∆

(2π)d
e−2k2tw1

Γ0(tw1, 0)
· (91)

As we discuss in Appendix B, the projection of this config-
uration onto β is random with zero mean (B.7) and short
range correlation (B.8). Thus a new coarsening process
begins in the second stage. After time tw2, the correlation
with the configuration at time tw1 is,

ρ = C(tw2, 0) ∼ (L(tw2)/L0)−λ. (92)

In the following we analyze the time evolution of the coars-
ening in the second stage (towards β) by projecting onto
α. The basic information is the structure-factor of the pro-
jection field with respect to α which can be obtained us-

ing (B.11) and (91),

Wα
k (tw2 + tw1) = ρ2Wα

k (tw1) +
∆

(2π)d

×
[
1− 2ρ2 1

Γ0(tw2, 0)
∆

(2π)d

∫
ddk′

×
∫

ddl′e−(k−k′)2tw2e−(k+l′)2tw2

× Wα
k−k′+l(tw1)

]
= ρ2 ∆

(2π)d
e−2k2tw1

Γ0(tw1, 0)
+

∆

(2π)d
(1− 2ρ2)

+ ρ2 ∆

(2π
√
A(tw1/tw2))d

×
exp

(
−2k2tw1/A(tw1/tw2)

)
Γ0(tw1, 0)

· (93)

where

A(y) ≡ 1 + 4y. (94)

The spatial correlation function of the projection with
respect to α is obtained immediately using (93) in (54) as,

C(r, tw2 + tw1, tw2 + tw1) =

ρ2 exp
(
− r2

8tw1

)
+ (1− 2ρ2)∆δd(r)

+ ρ2A−d/2(tw1/tw2) exp
(
− r2

8tw1/A(tw1/tw2)

)
. (95)

This simple result immediately allows its physical in-
terpretation. The first term in (95) can be written as
ρ2 exp(−(r/L(tw1))2) which implies the remnant of the
spatial correlation established in the first stage. The am-
plitude ρ decreases as (92) in the second stage. This can be
interpreted as the correlation between the ‘ghost’ domains
discussed in Section 3.3 which is losing its amplitude. Thus
no matter how large the noise becomes, the ‘memory’ of
the spatial structure is conserved. The second term (95)
represent the short-range noise induced by the coarsening
of an unrelated phase. The last term becomes the same as
the first term in the limit L(tw2)� L(tw1) since A ' 1 as
one can see from (94). In the other limit, L(tw1)� L(tw2),
it can be neglected.

4.4.2 Inner- and outer-coarsening regimes in the third stage

We now restore the equilibrium state α as the target
state for time tw3 given the ‘noisy’ spin-configuration at
the end of the second stage as the input. Here we ex-
amine the scenario conjectured in Section 3.3 that the
inner-coarsening transforms the ‘ghost domains’ back into
‘real domains’. We demonstrate that the inner-coarsening
regime, the intermediate plateau regime and the outer-
coarsening regime show up explicitly in various correlation
functions and response functions.
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Using (93) in (51), the Γ factor in the third stage which
we denote as Γ1−step is obtained as,

Γ1−step(tw3 + tw2 + tw1, tw2 + tw1) =∫
ddke−2k2tw3Wα

k (tw2 + tw1)

= ρ2Γ0(tw3 + tw1, tw1) + (1− 2ρ2)Γ0(tw3, 0)

+ ρ2A−d/2(tw1/tw2)Γ0

(
tw3 +

tw1

A(tw1/tw2)
, tw1

)
. (96)

Here Γ0 is the one obtained in the solution for standard
coarsening (59) with un-biased random initial condition.
It is again useful to define the relative ratio of the contri-
bution of the three terms in the last equation as,

m2
mem(tw3, tw2, tw1) =

ρ2Γ0(tw3 + tw1, tw1)/Γ1−step(tw3 + tw2 + tw1, tw2 + tw1),
(97)

m2
rej(tw3, tw2, tw1) =

(1− 2ρ2)Γ0(tw3, 0)/Γ1−step(tw3 + tw2 + tw1, tw2 + tw1),
(98)

m̃2(tw3, tw2, tw1) = ρ2A−d/2(tw1/tw2)Γ0

×
(
tw3 +

tw1

A(tw1/tw2)
, tw1

)
/Γ1−step

× (tw3 + tw2 + tw1, tw2 + tw1). (99)

The structure-factor of the projected field to α is obtained
using (52) as,

Wα
k (tw3 + tw2 + tw1) =

Wα
k (tw2 + tw1)

e−2k2tw3

Γ1−step(tw3 + tw2 + tw1, tw2 + tw1)
,

(100)

where Wα
k (tw2 + tw1) is given in (93) and Γ1−step(tw3 +

tw2 + tw1, tw2 + tw1) is given in (96). Then the spatial
correlation function of the projected field is obtained using
(100, 93) and (96) in (54) as,

C(r, tw3 + tw2 + tw1, tw3 + tw2 + tw1) =

m2
mem(tw3, tw2, tw1) exp

(
− r2

8(tw3 + tw1)

)
+m2

rej(tw3, tw2, tw1) exp
(
− r2

8tw3

)
+ m̃2(tw3, tw2, tw1) exp

(
− r2

8(tw3 + tw1/A(tw1/tw2))

)
.

(101)

In the last equation we used the parameters introduced in
(97, 98) and (99). Note that there is a sum rule,

m2
mem +m2

rej + m̃2 = 1, (102)

by the definition of the parameters. Obviously the first
term in (101) can be physically understood as the cor-
relation due to the continuation of the ‘ghost domains’

(memory). The amplitude mmem can be regarded as the
staggered magnetization associated with the continuation
of the ‘ghost domains’. Similarly the second term can be
interpreted as the correlation due to re-start of coarsening
within the ghost domains (rejuvenation), which we called
‘inner-coarsening’ in Section 3.3. The role of the last term
depends on relative ratio of the size of the domains in the
first and second regime as we discuss later.

Now we discuss the change of the profile of the spatial
correlation function with increasing time tw3 in the third
stage. We assume that the duration of the second regime
is large enough so that the bias has become very small
ρ � 1. Then at the beginning for small tw3, we find the
parameter defined in (98) is m2

rej ' 1 while the other two
m2

mem and m̃2 defined in (97) and (99) are very small.
Then the second term in (101) which represent the inner-
coarsening (rejuvenation) is therefore dominant,

C(r, tw3 + tw2 + tw1, tw3 + tw2 + tw1)

' exp

[
−
(

r

L(tw3)

)2
]

inner-coarsening regime (103)

On the other hand, in the asymptotically large time scale
such that L(tw3) ∼ L(tw3 + tw1), (i.e. tw3 ∼ tw1), the
spatial correlation function becomes,

C(r, tw3 + tw2 + tw1, tw3 + tw2 + tw1)

' exp

[
−
(

r

L(tw3 + tw1)

)2
]
, outer-coarsening regime

(104)

Here we used the sum rule (102). This regime can be in-
terpreted as the outer coarsening regime we discussed in
Section 3.3.

We have discussed in Section 3.3 that the crossover
between the inner-coarsening and outer-coarsening regime
depends on the relative domain sizes of the first and sec-
ond stages. We will indeed find below that it is the case
in the present model. In the following we consider the
two limiting cases: a) L(tw1) � L(tw2) and b) L(tw1) �
L(tw2).

4.4.3 Rejuvenation and memory: Case a)

We consider the case a) L(tw1) � L(tw2): the duration
of the first stage is much longer than the second. In this
case the parameter m̃2 is very small compared with m2

rej

since A � 1 as one can see in (94). Thus we neglect the
last term in the spatial correlation function given in (101).
Then the basic structure of the correlation function (101)
can be naturally interpreted as a sum of Gaussian packet
due to the inner-coarsening (rejuvenation) whose size is
L(tw3) (second term) and that due to the continuation of
the ‘ghost domains’ (memory) of size L(tw3 + tw1) (first
term). In this case, the inner-coarsening regime (103) ter-
minates due to the effect of the bias as we discussed in



382 The European Physical Journal B

Section 3.3. Furthermore there is an intermediate regime
which we called ‘plateau regime’ in Section 3.3 so that re-
juvenation and memory effects can be observed in a well
separated manner.

Let us consider the characteristic time scale at which
the staggered magnetization of the ghost domain mmem

defined in (97) and mrej defined in (98) become the same
order. For short times such that L(tw3)� L(tw1), we can
assume Γ0(tw3 + tw1, tw1) ∼ 1 in (97). Then the time scale
τrec(ρ) at which mmem and mrej become the same order is
obtained using (59) as,

ρ ∼ (L(τrec(ρ)/L0)−λ, (105)

which is the same as (82) obtained in the limit L(tw1)→
∞. Note that the assumption Γ0(tw1 + tw3, tw1) ∼ 1 is still
satisfied because the bias is ρ ∼ (L(tw2)/L0)−λ as given
in (92) which implies

L(τrec(ρ))� L(tw1). (106)

When the inner-coarsening regime ends, we are left with
the ‘ghost domains’ which have almost recovered their full
staggered magnetization mmem ' 1. The latter can be in-
terpreted as the fact that the ‘real domain’ are recovered.
However, the relation (106) implies that the relaxation
time τrec(ρ) is not large enough to grow the revived do-
main further. Thus there is an intermediate regime where:

C(r, tw3 + tw2 + tw1, tw3 + tw2 + tw1) '

exp

[
−
(

r

L(tw1)

)2
]
,

plateau regime L(tw1)� L(tw3)� L(τrec(ρ)). (107)

This is the plateau regime in which the revived domain
appears frozen in time. Thus the memory (spatial struc-
ture of bias) conserved in the system is retrieved with its
original full amplitude within this regime. Much later in
time, the plateau regime is followed by the asymptotic
outer-coarsening regime (104).

4.4.4 Complete rejuvenation: Case b)

Next we discuss the case b) L(tw1) � L(tw2): the dura-
tion of the first stage is much shorter than that of the
second stage. In this case we find that the two contribu-
tions defined in (98) and (99) become essentially equal
m2

mem ' m̃2 since A ' 1 holds as one can see in (94).
Thus the basic structure of the correlation function (101)
can be again naturally interpreted as a sum of Gaussian
packet due to the domain of inner-coarsening (rejuvena-
tion) whose size is L(tw3) and that due to the continuation
of the ‘ghost domain’ (memory) of size L(tw3 + tw1).

However, the amplitude of the memory terms m2
mem('

m̃2) does not recover much and saturates to a small value
∼ (L(tw1)/L(tw2))λ � 1 as L(tw3) ∼ L(tw1) (tw3 ∼ tw1).

In the latter regime, the width of the memory and rejuve-
nation terms become of the same order,

L(tw3) ∼ L(tw1 + tw3); tw3 ∼ tw1 (108)

Thus the correlation function crossovers very smoothly to
the asymptotic outer-coarsening regime (104) so that the
memory cannot be retrieved. The resultant behavior of
the correlation function is not very different from the case
of tw = 0. In this sense the relaxation is almost completely
rejuvenated.

4.4.5 U-turn in the phase space

The above result implies the time evolution of system in
the phase space during the third stage is such that it makes
an U-turn to configuration before the second stage (inner-
coarsening) and stay there for a while (plateau-regime)
and finally make further excursion (outer-coarsening).
Such a feature can be elucidated by considering overlap
q between the configuration just after the first stage and
the temporal configuration in the third stage. It is readily
obtained as,

q(tw3) =
∫

ddk
(2π)d

∫
ddl

(2π)d
〈〈φk(tw3 + tw2 + tw1)〉σ

×φl(tw1)〉ini

=
∫

ddk
ρe−k

2tw3√
Γ1−step(tw3 + tw2 + tw1, tw2 + tw1)

Wα
k (tw1) =

ρΓ1−step((tw3 + tw1 + tw1)/2, tw2)√
Γ1−step(tw3 + tw2 + tw1, tw2 + tw1)

= C0(tw3 + tw1, tw1)mmem(tw3, tw2, tw1). (109)

In the last equation we used the ratio mmem defined in
(97) and C0 is the auto-correlation function of standard
coarsening (62).

As we found in the previous sections the ratio
mmem(tw3, tw2, tw1) can be physically understood as the
staggered magnetization which increases with tw3 in the
third stage. On the other hand, the factor C0(tw3 +
tw1, tw1) which appears in (109) describes de-correlation
due to outer-coarsening.

The competing effects of the inner-coarsening and
outer-coarsening make the overlap q(tw3) non-monotonic
in time tw3. In the case a) L(tw1) � L(tw2) the behavior
is the following. It increases during the inner-coarsening
because of the increase of mmem and almost saturate to 1
at time scale tw3 at around the recovery time τrec(ρ). It
stays close to 1 during plateau regime. Then in the outer-
coarsening regime, it decreases with time. This picture ob-
viously becomes invalid in the case of b) L(tw1)� L(tw2).

4.5 Three-stage relaxation of auto-correlation function
after one-step cycling

We now turn to more conventional observables with which
the rejuvenation and memory effects can be see easily.
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Fig. 6. The auto-correlation function C(τ+tw2+tw1, tw2+tw1)
in the O(n) Mattis model (d = 1) under one-step cycling. The
dotted lines are curves with common tw2 = 104 but varying
tw1 = 102, 104, 106, 108, 1010, 1012 (from left to right). The solid
line on the top is the curve with tw2 = 104 but with tw1 =∞
(top). The dash-dotted line is the reference curve with zero
waiting time of standard coarsening C0(τ, 0) (left most).

While the spatial correlation function of the projection
field discussed above is convenient for theoretical discus-
sions, it is obviously impractical in simulations and exper-
iments of spin-glasses. In this section, we consider auto-
correlation functions and linear response functions in the
next section. These quantities are invariant under changes
of projections and can be measured directly in numerical
simulations and experiments. We will demonstrate that
the characteristic three-stage relaxation after one-step cy-
cling: inner-coarsening (rejuvenation), plateau and outer-
coarsening (memory) regimes show up explicitly in these
two-time quantities.

The auto-correlation function between two times in
the third stage is obtained using (96) in (55) as,

C(τ + ttotal
w , ttotal

w ) =

Γ1−step(τ/2 + ttotal
w , tw2 + tw1)√

Γ1−step(τ + ttotal
w , tw2 + tw1)

√
Γ1−step(ttotal

w , tw2 + tw1)
(110)

with ttotal
w ≡ tw3 + tw2 + tw1. (111)

Here the explicit form of the Γ -factor is given in (96).
As we discussed in Section 3.5, the auto correlation func-
tion can be related with the DC-magnetic susceptibilities
measured in experiments.

First, let us look at the simplest case tw3 = 0: i.e. the
correlation between the configuration just at the begin-
ning of the third stage and the configuration a time τ later.
Here we only consider the case a) L(tw1)� L(tw2) which
allows clear separation between the inner- and outer-
coarsening regimes. Within the inner-coarsening regime
τ � τrec the amplitude of the ghost domains is small
mmem � 1 and mrej ' 1. When the inner-coarsening ends
at τ ∼ τrec, the amplitude of the ghost domains is al-
most recovered: mmem ' 1 and mrej � 1. Then one can
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Fig. 7. The auto-correlation function C(τ+tw2+tw1, tw2+tw1)
in the O(n) Mattis model (d = 1) under one-step cycling.
The dotted lines are curves with common tw1 = 1010 but
varying tw2 = 0, 102, 104, 106, 108 (from top to bottom). The
solid lines are the reference curve of tw1 = ∞ but varying
tw2 = 102, 104, 106, 108 (from top to bottom). The dash-dotted
line is the reference curve of zero waiting time of standard
coarsening C0(τ, 0).

see easily that the correlation function have the following
feature,

C(τ + tw2 + tw1, tw2 + tw1) =
C0(τ, 0) L(τ)� L(τrec(ρ)) (112)

ρC0(τ + tw1, tw1) L(τ)� L(τrec(ρ)). (113)

Here C0 is the auto-correlation function in the standard
coarsening given in (109). The result confirms the scal-
ing property (30) conjectured in Section 3.5. It visual-
izes clearly the cross-over from inner-coarsening, plateau
regime and outer-coarsening. Note that in the limit
L(tw1) → ∞, the last relaxation does not occur C0(τ +
tw1, tw1) = 1 and we recover the result of the case in which
we start from fully symmetry broken state with respect to
phase α. (see (89) and (90) )

We present some plots of the auto-correlation function
C(τ + tw2 + tw1, tw2 + tw1) in Figures 6 and 7 for the case
of d = 1. The generic feature is of course the same at
any dimension but the dynamical exponent for the decay
depends on the dimension as λ = d/2. Here the three-
stage relaxation is clearly visible. Note that the plateau
is visible only for the cases in which tw1 � tw2, which is
the condition to have sharp separation between the inner-
coarsening and outer-coarsening.

Second, let us consider more complicated cases with
non-zero tw3 > 0. The reason we analyzed it is to make
comparison with a set of conventional TRM data [7] where
such a protocol is used5. Later in Section 6, we compare
the result with an experimental data. In Figure 8 we show
a plot of the auto-correlation function C(τ + ttotal

w , ttotal
w )

given in (110). We also show curves of the special case
where tw1 →∞. It can be seen that the initial decay does

5 In any case, it may be impossible to realize strictly tw3 = 0
in experiments.
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Fig. 8. The auto-correlation function C(τ + ttotal

w , ttotal
w ) with

ttotal
w = tw3 + tw2 + tw1 in the O(n) Mattis model (d = 1) un-

der one-step cycling plotted against the time difference τ in
the third stage. In Section 6, we compare these curves with an
experimental data of the relaxation of thermo-remanent mag-
netization after one-step temperature cycling. The thin solid
lines are curves with common tw1 = 990 and tw3 = 10 but
varying tw2 = 106, 105, 104, 103, 102, 101 (from left to right).
The dotted lines are the corresponding curves with tw1 = ∞.
The top and bottom bold solid lines are the reference curves
of standard coarsening C0(τ + 1000, 1000) and C0(τ + 10, 10)
respectively.

not depend on tw1 and decays as the case tw1 =∞. This is
the inner-coarsening regime which then crossovers to the
plateau regime. Finally, the departure from the plateau
due to outer-coarsening becomes visible at around L(τ) ∼
L(tw3 + tw1).

The plateau value is nothing but the staggered magne-
tization within the ghost domains at time tw3 + tw2 + tw1.
The latter is naturally smaller for longer duration of the
second stage tw2. But note that it also depends on tw3

because the staggered magnetization tends to go back to
the full value 1 in the third stage (see (83)). The last
feature imply that rejuvenation is obscured in this proto-
col. Nonetheless, for any tw2, the presence of rejuvenation
(inner-coarsening regime) can be recognized by comparing
with the curves with much larger tw1 as demonstrated in
the figure.

4.6 Short time linear response functions
in one-step cycling

Within the spherical Mattis model, it is also possible to
study directly the linear response function exactly. We
study it below for the one-step cycling protocol and fo-
cus especially on its behavior in the third stage. Here we
will consider response functions R(∆t + t, t) with fixed
time separation ∆t as a function of increasing time t. It is
analogous to the relaxation of AC-susceptibilities χ′′(ω, t)
of frequency ω = 1/∆t at time t. The advantage of study-
ing R(∆t + t, t) is that its analytical expression is sim-
pler than that of χ′′(ω, t). Some details of the calculations
are presented in Appendix C. We will find the anticipated
crossover from inner-coarsening to outer-coarsening in the
response sketched in Section 3.4.

It should be noted however that mean field theo-
ries [27–29] suggests long time behavior of the response
is likely to be quite different between spin-glass and usual
coarsening systems as we noted in Section 3.5. Nonethe-
less, as far as short-time response is concerned the generic
behavior of the response function may be similar.

In the first stage the relaxation is the same as in the
standard coarsening and we naturally find new relaxation
also in the 2nd stage,

R̃I(∆t+ t, t) = R̃0(∆t+ t, t)

R̃II(∆t+ t, t) = R̃0(∆t+ (t− tw1), t− tw1). (114)

Here R̃ is the response function scaled by that in equilib-
rium and R̃0(∆t+ t, t) is the rescaled response function of
the standard coarsening (see Appendix C for the details).

One finds richer behavior of the short-time response
in the 3rd stage tw3 + tw2 + tw1 > t > tw2 + tw1 as ob-
tained in (C.11) and (C.12). We find the following. At the
beginning of the third stage which is the inner-coarsening
regime, we find new relaxation. On the other hand, in
larger time scale which we called as plateau and outer-
coarsening regime, we find continuation of the 1st stage.

R̃III(∆t+ t, t) ' R̃0(∆t+ t− tw2 − tw1, t− tw2 − tw1)
inner-coarsening regime (115)

R̃III(∆t+ t, t) ' R̃0(∆t+ t− tw1, t− tw1)
plateau/outer-coarsening regime (116)

In the case a) L(tw1) � L(tw2) which allows the plateau
regime, the inner-coarsening regime finishes before the sig-
nificant relaxation due to the outer-coarsening starts. The
generic feature is consistent with the picture presented in
Section 3.4 (see Fig. 4).

4.7 Multiplicative noise effect and 2-step U-turns
in a 2-step cycling

One can extend the above calculations to two-step cycling
α → β → γ → β → α, trying to mimic the multi-step
cycling discussed in Section 3.6. Although the full calcu-
lation will be become too lengthy, we can readily have a
glimpse of what happens in the spherical model.

Let us suppose that we are given a spin-configuration
whose projection to a certain equilibrium state α is φ̂αk (0).
We consider to give this as initial condition for a one-
step cycling β(tw1) → γ(tw2) → β(tw3) and monitor the
time evolution of the projection to α. One finds that the
expectation value of the projection φ̂αk (tw3 + tw2 + tw1) at
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time tw3 + tw2 + tw1 as,

〈φ̂αk (tw3 + tw2 + tw1)〉σ =
∫

ddk1

(2π)d

∫
ddk2

(2π)d

∫
ddk3

(2π)d

×
∫

ddk4

(2π)d
〈(σ̂αβ)k1(σ̂βγ)k2(σ̂γβ)k3(σ̂βα)k4〉σ

× e−(k−k1)2tw3√
Γ1−step(tw3 + tw2 + tw1, tw1 + tw2)

e−(k−k1−k2)2tw2√
G0(tw2, 0)

×e−(k−k1−k2−k3)2tw1√
G0(tw1, 0)

φ̂αk−k1−k2−k3−k4
(0)

= mmem(tw3, tw2, tw1)C0(tw3 + tw1, 0)φ̂αk (0). (117)

In the derivation of the last equation, we used (A.7),
(59, 62) and (97). Thus we find that the expectation value
of the projection field is proportional to the initial one
φ̂αk (0) with time-dependent prefactor.

A remarkable point is that the prefactor is the prod-
uct of mmem(tw3, tw2, tw1) and the auto-correlation func-
tion C0(tw3 + tw1, 0). At the beginning of the last stage
(2nd β-coarsening), we readily find that the prefactor is
C(tw1, 0)ρ where ρ is the reduction of the amplitude due
to γ coarsening. The latter means a multiplicative reduc-
tion of the amplitude of the projection onto α due to the
successive coarsening of two different phases (β and γ)
as we conjectured in Section 3.6. The fact that noise ef-
fect is multiplicative, can be check explicitly in more gen-
eral multi-step coarsening as presented in Appendix B (see
(B.9)).

In the inner-coarsening regime of the last stage (2nd
β-coarsening), we readily find that mmem(tw3, tw2, tw1)
almost returns back to 1 within the recovery time τrec

so that the noise due to γ-coarsening onto β is now
removed. As far as time separation is wide enough so
that the plateau regime is allowed, the recovery time
τrec is much shorter than tw1. Within the plateau regime
C0(tw3 + tw1, 0) ' C0(tw1, 0). Remarkably, then the above
formula (117) implies that the noise onto α due to γ coars-
ening is also cured thanks to the 2nd β-coarsening and
the remnant noise is now only that due to β phase. But
if one perform the 2nd β-coarsening for too long, the fac-
tor C0(tw3 + tw1, 0) will begin to decrease further meaning
that the noise due to β coarsening will now affect the pro-
jection to α.

If one stops the 2nd β-coarsening at around τrec and
then switch to coarsening of α, the remnant noise due to
β phase will be removed. The above result demonstrates
that the system can be returned back to the starting point
in the phase space by two-step U-turns. This is consistent
with our picture presented in Section 3.6 for the recovery
of memory in multi-step cycling.

5 Two-dimensional Ising Mattis model

While the O(n) model in the spherical limit is analyti-
cally tractable and contains the essential phenomenology
of coarsening systems, its drawback is that it does not

10 100 1000
0.01

0.1

Fig. 9. The auto-correlation function C(τ+tw2+tw1, tw2+tw1)
in the d = 2 Ising Mattis model under one-step cycling plotted
versus τ (MCS). The dotted lines are tw2 = 20 MCS and tw1 =
100, 300, 1000, 3000 (MCS) from left to right. The solid line
on the top is the case tw1 = ∞. The dash-dotted line is the
reference curve with zero-waiting time.
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1

Fig. 10. The auto-correlation function C(τ + tw2 + tw1, tw2 +
tw1) in the d = 2 Ising Mattis model under one-step cycling
plotted versus τ (MCS). The dotted lines are tw1 = 1000 MCS
tw2 = 0, 2, 4, 8, 16, 30, 50 from the top to below. The solid lines
are with tw1 =∞. The dash-dotted line is the reference curve
with zero-waiting time.

contain topological defects like domain walls [52]. Thus it
is desirable to study models which have clearly defined
domain walls. In the present paper, we do not pursue
more elaborate analytical calculations to take into account
topological defects like the Ohta-Jasnow-Kawasaki ap-
proximation. Instead, we directly study the Mattis model
introduced in Section 3.1 with Ising spins on a two-
dimensional square lattice by Monte Carlo simulations.

The algorithm is zero temperature Monte Carlo dy-
namics with multi-spin coding. The spin configurations
{σα(β)

i } in the ground states are chosen to take ±1 ran-
domly.

5.1 Auto-correlation function after one-step cycling

We simulated the one step cycling process A → B → A
described in Section 3.3, which was studied in the O(n)
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Fig. 11. The projection of the spin configuration onto the ground state A, B and C (from top to bottom) at the end of each
stage in the in a 2-step cycling. The columns are in the chronological order. Here tw1 = 10000, tw2 = 100, tw3 = 2, t′w2 = 4,
t′w1 = 200 (MCS). The system size is 1024 × 1024.

model in Section 4.4. We examined the auto-correlation
function between the configuration just at the beginning
of the third stage and the temporal configuration after
time τ in the third stage, which was studied in the O(n)
model in Section 4.5. The system size is 8192×8192 which
is large enough to avoid finite size effects within the time
window we have explored ∼ 104 (MCS).

In Figures 9 and 10 we present the result of the auto-
correlation function. We included the results of simula-
tions in which the ground state of phase α is given to the
second stage as the input, i.e. the tw1 =∞ limit. By com-
paring with the corresponding results within the spherical
model shown in Figure 6 and 7, one can see a very similar
structure of the relaxation curves in agreement with the
conjecture presented in Section 3.5. The initial decay im-
plies inner-coarsening regime where the correlation decays
as if the memory of the first stage was completely lost. The
subsequent behavior implies however that the memory of
the first stage is not lost but its amplitude is reduced from
1 to ρ < 1 at the beginning of the third stage.

5.2 An example of multiple-memory

In Section 3.6 we discussed coarsening under cycling of
multiple phases. Especially we argued that i) the noise ef-
fect of multiple phases is multiplicative and that ii) the
multiplicative noises can be removed one by one by addi-
tional series of coarsening in the reversed order. We have
verified the picture within the spherical model to a certain
extent in Section 4.7. Here we present a demonstration of

the coarsening under cycling of three independent target
states in the 2-dimensional Ising Mattis model where the
two features i) and ii) appear explicitly.

In Figure 11 we show the time evolution of the pro-
jection to three completely different ground states A, B
and C during two-step coarsening A(tw1) → B(tw2) →
C(tw3) → B(t′w2) → A(t′w1). We chose tw1 = 10 000,
tw2 = 100, tw3 = 2, t′w2 = 4 and t′w1 = 200 (MCS). The
time schedule is decided according to the principle ex-
plained in Section 3.6. First, the first series A → B → C
is designed such that the length scales of the three-phases
are well-separated tw1 � tw2 � tw3. Second, the reversed
series B → A is designed such that multiplicative noise
is removed one by one without accumulating additional
noise: tw2 > t′w2 > tw3 and tw1 > t′w1 > tw3.

One finds that the noise on A in the end of 3rd stage
can be very large. This latter is due to the multiplicative
effect of noise. It will take enormous time to remove the
noise by a single stroke which well exceeds tw1 so that
recovery of memory is hopeless. However, one can find
that memory of the spin-configuration at the end of 2nd
and 1st stages are recovered by the 4th and 5th stages re-
spectively (as shown by arrows in the schematic diagram.)
Thus this example demonstrates that multiple memories
can be indeed stored and retrieved successively as argued
in Section 3.3.
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Fig. 12. Relaxation of χ′′ during an one-step negative
temperature-cycling experiment 12 K → 11 K → 12 K as a
function of time. The inset shows points taken during the first
and third stage at T = 12 K plotted against the total time
spend at T = 12 K. The solid line is a reference relaxation
curve of isothermal aging at T = 12 K.

6 Comparison with temperature-cycling
experiments in spin-glasses

We now discuss the temperature-cycling experiments in
spin-glass from the present point of view. For reference,
we consider the data of experiments on the CdCr1.7In0.3S4

(Tc = 16.7 K) insulating spin glasses. Because of the
limitation of pages we cannot discuss another rich set
of experimental results obtained in Cu:Mn metallic spin-
glass [12–14] which show essentially the same features.
For AC-susceptibility in one-step temperature cycling we
refer to [10,11] and [15] for multi-step (continuous) tem-
perature cycling. For DC-susceptibilities we refer to the
measurements of thermo-remanent magnetization (TRM)
on the same CdCr1.7In0.3S4 system reported in [7] which
can also be found in [8].

6.1 AC-susceptibility in one step temperature-cycling
experiments

We consider first the measurements of the out-of-phase AC
susceptibility χ′′(ω, t) in a one-step temperature cycling
procedure, and interpret them according to the picture
presented in Section 3.3 and Section 3.4. In Figure 12 the
data [10] of the relaxation of χ′′(ω, t) at ω/2π = 0.1 Hz
is shown. Note that the schematic picture presented in
Figure 4 agrees well with the general feature of the data.
The third regime can be naturally understood as contain-
ing both the inner-coarsening regime and outer-coarsening
regime in a well separated manner. We expect that the du-
ration of the inner-coarsening regime is given by (21). This
yields τrec ' 700 (sec) at 12 K using the microscopic time
scale τ0 = 10−13 (sec) and the duration of the second stage
tw2 ∼ 2 × 104 (sec) at 11 K. The order of magnitude of
the latter is compatible with the duration of the transient

Fig. 13. χ′′ relaxation during an one-step negative
temperature-cycling experiment 12 K → 10 K → 12 K as a
function of time. The inset shows points taken during the first
and third stage at T = 12 K plotted against the total time
spend at T = 12 K. The solid line is a reference relaxation
curve of isothermal aging at T = 12 K.

relaxation ∼ 2500 (sec) seen at the beginning of the third
stage.

In Figure 13 the data [11] of a similar experiment but
with a larger ∆T is shown. In this case the relaxation of
the inner-coarsening regime is expected to be, from (21),
τrec ' 27 (sec) using τ0 = 10−13 (sec) and the duration
of the second stage tw2 ∼ 350 (min). Note that this is
of the same order of the period of the AC measurement
2π/ω ∼ 10 (sec) so that condition (24) needed to observe
the inner-coarsening regime is barely satisfied. Because of
the temperature dependence of the stiffness of the bar-
rier (8), τrec would be even shorter and the condition (24)
would be strongly violated. This could explain why the
transient relaxation seen in Figure 12 is absent from the
data, and that full memory can be expected.

Now let us consider the data [10] corresponding to a
positive cycling in the same system, which is shown in
Figure 14. In this case the duration of the second stage
tw2 ∼ 6000 (sec) at 13 K amounts to effective time (5) of
105 sec at 12 K, which is much larger than the duration
of the first stage (tw1 ∼ 4000 (sec)). Thus in the third
regime we expect that the inner-coarsening regime and
outer-coarsening are not separated, and that the obtained
relaxation is very close to the one obtained in the first
regime (no memory).

To summarize we found that the present picture is
compatible with the experimental data of the out-of-phase
AC susceptibility during one-step temperature cycling. In
particular, the memory effect for negative cycling is ex-
plained by the fact that the inner-coarsening regime ends
after a time so short that it cannot be observed.

In the cases discussed above, we did not need to take
into account the fact that the overlap length ξ∆T become
very large when ∆T → 0. However it should be noted
that the overlap length associated with any fluctuations of
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Fig. 14. χ′′ relaxation during an one-step positive
temperature-cycling experiment 12 K → 13 K → 12 K as a
function of time. The inset shows points taken during the first
and third stage at T = 12 K plotted against the total time
spend at T = 12 K. Note that the second curve can nearly be
superimposed onto the first one by an horizontal shift of 4000
seconds.

temperatures in experiments should be large enough com-
pared with the dynamical length scales explored. Other-
wise experimental temperature becomes meaningless. In-
deed, there are some data which suggest that ξ∆T depends
on ∆T [13]. For example the data of negative cycling be-
tween very close temperatures 12→ 11.7 K→ 12 K of the
insulating spin-glass shown in [11] reveals that the relax-
ation during the second stage at 11.7 K ‘helps’ relaxation
at 12 K to a certain extent.

6.2 DC-susceptibility in one step temperature-cycling
experiments

Let us now consider the relaxation of the thermo-remanent
magnetization (TRM), which is a DC susceptibility, af-
ter similar one-step cycling. A representative data set is
shown in Figure 15 which is taken from [8]. Here a positive
temperature cycling 12 K → 12 K +∆T → 12 K is done
under small magnetic field which is then cut-off. Then the
subsequent relaxation of the magnetization is measured.
Here the duration of the second stage is fixed to 5 minutes
but the amplitude of the shift ∆T is varied.

Now let us compare the experimental data with the
correlation function after a one-step cycling in the O(n)
Mattis model, which we analyzed in Section 4.5. Here
we suppose that the generic features of the correlation
function and TRM decay are similar. It should however
be noted that this is not obvious since the violation of
the fluctuation dissipation theorem (FDT) in such non-
stationary situations [27,29,30] does not allow an exact
identification of the two quantities. Second, we again disre-
gard the possible finite value of ξ∆T between the different
equilibrium states at different temperatures and consider
that they are completely uncorrelated.

The activated dynamics (3) implies that for larger∆T ,
the coarsening in the second stage reaches larger length
scales L12 K+∆T (tw2), so that more ‘noise’ is added to the

Fig. 15. Relaxation of the thermo-remanent magnetization
(TRM) at 12 K after a one-step positive temperature-cycling.
The procedure is shown in the inset. The reference curves of
tw = 30 (min) and tw = 1000 (min) of standard (isothermal)
aging are also shown.

12 K domain structure. Thus we suppose that larger ∆T
in the experiment corresponds to larger tw2 in our model.
Indeed the experimental curves shown in Figure 15 appear
to be very similar to the result in the O(n) Mattis model
shown in Figure 8.

In Section 4.5, we found that the generic features of the
auto-correlation function can be understood as crossover
from rejuvenation (inner coarsening) to memory (outer-
coarsening). This crossover is sharp only in the case a)
where the second stage is effectively much shorter than
the first stage (tw2 � tw1). On the other hand, in the case
b) where the second stage is effectively much longer than
the first stage, rejuvenation is nearly complete.

Let us note that the curve in Figure 8 with ∆T =
2.5 K belongs to the case b) because the effective time
(5) of 5 minutes at 14.5 K amounts to 8400 min at 12 K
(with τ0 ∼ 10−13 (sec)), which is very large compared with
tw1 = 970 min. On the other hand, ∆T = 1.5 K and 1 K
can be considered as cases of a) since their effective time
430 min and 97 min at 12 K are smaller than tw1. It would
be very interesting to look experimentally for the plateau
regime as seen in Figures 6, 7, 8 and Figures 9, 10.

6.3 Multiple step temperature-cycling

Finally let us consider the multiple-step (continuous) ver-
sion of the temperature cycling which has been studied in
recent experiments [12,14–16] using the out-of-phase AC
susceptibility χ′′(ω, t). Here we discuss based on the sce-
nario we developed in Section 3.6. In Figure 16 an example
of the data taken from [15] is shown.

The basic schedule is a negative-cycling which con-
sist of cooling and heating procedure. In the cooling, the
temperature is reduced successively by ‘micro-quenches’
of small temperature step ∆T , Ti = Tstart − i∆T with
(i = 1, 2, . . . , n) where Tstart is the starting temperature
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Fig. 16. Out-of-phase susceptibility χ′′ of the CdCr1.7In0.3S4

spin glass. The solid line is measured upon heating the sample
at a constant rate of 0.1 K/min (reference curve). The data
during cooling (not shown) lies close to but slightly above the
solid line. Open diamonds: the measurement is done during
cooling at this same rate, except that the cooling procedure
has been stopped at 12 K during 7 h and then 40 h at 9 K to
allow for aging. Cooling then resumes down to 5 K: χ′′ is not
influenced and goes back to the reference curve (rejuvenation,
from Ref. [15]). Full circles: after this cooling procedure, the
data is taken while re-heating at the previous constant rate, ex-
hibiting memory of the aging stage both at 9 K and 12 K. The
inset shows a similar “double memory” experiment performed
on the Cu:Mn metallic spin glass.

and n is the number of steps. At every temperature Ti a
short period of time ti = ∆t is spent. In this experiment,
∆T = 0.5 K and ∆t = 5 min [34]. In the heating. the
temperature is raised back successively by the same ∆T
with a the same period t′i = ∆t at each temperature.

Within the present scenario, coarsening of new phases
are expected at every temperature in the cooling and the
heating is the reversed order series of coarsening. Note
that the above basic schedule satisfies the condition (33)
to retrieve the memory at each temperature in the heat-
ing. For instance (21) implies the noise due to ∆T = 5
min at 10 K on the phase at 10 + ∆T = 10.5 K can be
erased quickly within τrec ∼ 1 (min). Indeed, it is found
in the experiment that the reference curve of cooling and
heating lie close to each other [15]. Concerning the fre-
quency of AC ω/2π ∼ 0.04 (Hz), we need to suppose that
it is low enough so that the signal of the cleaning (inner-
coarsening) does not blur the observation of the memory.

In the experiment, an interesting modification is made
for the cooling procedure: now two special temperatures
(9 and 12 K) are chosen to make relatively long stops
tstop ∼ 40, 7 hours in stead of the short period ∆t = 5
min. But all the rest of the basic schedule is unchanged.
The dips in cooling curve mean relaxation due to the long
aging. Then the fact that the cooling curve tend to return
to the reference curve (without stops) after the long stops

implies coarsening of the new phase within the present
scenario.

Let us the consider the heating curve. As the temper-
ature comes up to the stop temperature 9 K, the curve
goes downward tracing the cooling curve. The latter is ex-
pected within the present scenario since as soon as the
noise due to coarsening at lower temperatures are erased,
we are left with the large ghost domain at 9 K with its
full amplitude recovered. The same phenomena happens
also for 12 K.

The phases at the temperatures just above 9 K and
12 K are expected to be very noisy due to the long stops.
The latter belongs to the case b) discussed in Section 3.3.2
and their memory may be hardly retrieved. Then the in-
crease of the heating curve after passing the stop tempera-
tures may be interpreted as the signal of inner-coarsening
(rejuvenation). Furthermore, the long stop at 9 K of
40 hours could have affected the memory at 12 K. How-
ever, its effective time turns out to be only 4 sec at 12 K.
If the stop temperatures are closer, the recovery of mem-
ory could have been affected more. Such a phenomena is
indeed observed in some experiments [16].

Finally let us also note that the ‘dips’ are rounded
in the experimental data, while we would have expected
sharper dips. In the present scenario, the rounding of the
dips may be attributed to finiteness of the overlap length.

7 Summary and open problems

7.1 What we have done in this paper

The basis of our approach in the present study is
the droplet picture. The fundamental ingredients of the
present paper are the tenets of the droplet theory, namely:
i) for a given temperature below the critical temperature,
there are only two equilibrium states related by a global
flip; ii) the relaxational dynamics is the coarsening of the
domains of these equilibrium states. The growth of the
domains is due to the thermal activation of droplets; iii)
the underlying equilibrium states change chaotically with
weak external perturbations, such as a change of temper-
ature.

By a combination of scaling arguments, analytical
calculations and numerical simulations, we have demon-
strated the preservation and retrieval of memory is possi-
ble in a purely dynamical way in the absence of any un-
derlying static backbone structure. First, we showed that
preservation of memory is possible by ‘ghost domains’
(domain wall structure plus noise) of all the phases the
system goes through in the temporal spin-configuration.
Here coexistence of statistically independent domains only
amount to mutual injection of uncorrelated short-range
noise which do not destroy the large scale spatial struc-
tures of each other. Thus in order to describe the spin-
configuration, one needs to keep track of the projections
to all phases. In this sense, there are indeed many ‘phases’
in the temporal spin-configuration, as already anticipated



390 The European Physical Journal B

in the experimental studies [7,8]. Then we studied in de-
tail retrieval of memory: how the noise on a phase due
to coexistence of the domain structures of other phases
can be removed by additional conjugate coarsening. The
analysis has been carried out explicitly in term of various
spatial/temporal correlation functions and linear response
functions. In particular, we have shown that when the time
spent in the intermediate state is sufficiently small, reju-
venation effects and memory effects can be observed in
a well separated manner. Therefore the difficulty of the
previous works [5,6,13] to explain the ‘memory effect’, is
resolved. It is rather surprising to find that the simplest
version of the droplet picture already contains a consis-
tent and rather rich phenomenology which can account
for experiments at least qualitatively.

7.2 Is the picture totally satisfactory?

The droplet picture itself is based on phenomenological
scaling arguments and Migdal-Kadanoff type real-space
renormalization-group calculations [1,2]. It is by no means
obvious that real spin-glasses can be described within this
simple scenario. Many papers have appeared recently, pre-
senting relatively strong evidence against the simplest ver-
sion of the droplet theory [39,41,42]. On the other hand
evidence for the validity of the basic droplet picture has
also been provided [43–45,80–82]. In the present paper we
have focused on the simplest version of the droplet the-
ory. Any modifications due to possible corrections to the
simplest version go beyond the scope of the present paper
and we leave this issue for future studies.

The theoretical situation of temperature chaos is also
far from being settle neither in low dimensional systems
nor in mean-field models. Early numerical investigations
at finite temperatures [70,71] suggests chaos with mag-
netic field and with the change of couplings. Temper-
ature chaos has been found in 2-d Edwards-Anderson
model [73] for very large length scales. Temperature chaos
has also been suggested by some analytical studies of
mean-field models [35,36,38]. However recent simulations
of both the SK and the 3d Edwards-Anderson models
have concluded on the absence of chaos with tempera-
ture [72] (as also suggested by another analytical calcu-
lation for the SK model [37]). But there is still a pos-
sibility that temperature-chaos was not observed in the
latter because the overlap length is larger than the sys-
tem sizes studied. Chaotic changes of equilibrium states
have also been looked for other related glassy systems. For
instance, a large scale transfer-matrix study of an elas-
tic string pinned in random media [3], which describes
for instance pinned domain walls, has found some evi-
dence for the chaotic change of the free-energy landscape
with temperature again for very large length scales. All
studies therefore suggest that ‘chaos’, if it exists, only oc-
curs on large length scales, whereas the dynamical length
is expected to be modest, even in experimental studies
[77,78], due to its very slow growth with time.

7.3 An alternative picture

Let us now briefly compare the present scenario based
on the droplet picture with another phenomenology [7,8],
based on a dynamical interpretation of the Parisi solution
of the SK (mean-field) model, which suggests that the en-
ergy landscape is hierarchical. A concrete implementation
of this picture was proposed in [24], in terms of a thermally
activated generalized random-energy model (GREM). To
each level of the hierarchical tree is associated a transi-
tion temperature, such that the dynamics at this level is
stationary for higher temperatures, and aging for smaller
temperatures. A small decrease of temperature induces
some rejuvenation by driving out of equilibrium a new
level of the tree, while freezing out the dynamics at the up-
per levels, thereby allowing the memory to be conserved.
This model was recently studied further in [26], where it
is shown numerically that the rejuvenation/memory effect
is indeed already reproduced with two levels.

A real space interpretation of this hierarchical tree pro-
posed in [24,60], and further developed in [23], in terms
of a multi-scale dynamics. Low levels of the tree corre-
sponds to short wavelength modes, which are only frozen
at low temperature, while large wavelengths modes are
frozen at a higher temperature and constitute the ‘back-
bone’ where the memory is imprinted. The picture is par-
ticularly clear in the context of pinned domains walls [23],
and should apply to disordered ferromagnets where the
slow dynamics comes from the motion of these pinned do-
main walls [19,21].

A closer look at the two different scenarios shows that
they actually share several important points. The fact that
the dynamics is thermally activated is crucial in both pic-
tures, as it provides a natural separation of time scales
for different length scales and/or temperatures. As was
pointed out in [23], for a given experimental time window,
temperature acts as a microscope by selecting the relevant
dynamical length scales. The way memory is conserved is
therefore common in both approaches: it is stored in large
length scales which are to a large extent unaffected by the
small length scale dynamics taking place at lower tem-
peratures. However it should be noted that in the droplet
picture, there is no static backbone structure in the phase
space and the memory is entirely a dynamical effect. The
mechanism leading to rejuvenation is therefore different
in the two pictures: in the droplet picture, it is due to a
complete modification of the free energy landscape with
temperature, whereas in the hierarchical picture it is due
to the progressive freezing of smaller and smaller wave-
lengths [23]. This picture is consistent with the simula-
tions of [72]: a broad peak in the overlap probability at
high temperature is resolved into sharper and sharper sub-
peaks as the temperature is lowered, with no overall shift.

One should finally note that comparable rejuvena-
tion/memory effects have now been seen in very different
materials, such as PMMA [17], where the droplet model is
probably not the appropriate picture. In this respect, the
idea of progressive freezing of smaller and smaller length
scales is perhaps more generic.
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7.4 Further developments

In the present paper, we discussed experimental data only
qualitatively. More detailed and critical examinations of
the scenario developed in the present paper should be
done. It would be very interesting to look for the plateau
regime which separates the rejuvenation and memory both
in experiments and numerical simulations.

A crucial difference between the two pictures is there-
fore the existence of an overlap length ξ∆T in the droplet
picture. The role of this length (that we have neglected
in the present paper to focus on the phenomena on larger
time scales) should show up when the temperature change
is very small (or equivalently shorter time scales are con-
sidered), and therefore be important to account for the
possible cooling rate effects [9,15] in spin-glasses. We hope
to come back to this important point in the future. We
have furthermore neglected the fact that the energy bar-
riers are expected to be temperature dependent in the
droplet picture through the temperature dependence of
the stiffness (8). This leads to a super-activated behavior
of the time scales, as was seen in [50], that needs to be
quantitatively accounted for [51,82].

If chaotic change of equilibrium states can be made
by non-thermal perturbations like change of magnetic
field [70] or pressure, they will also provide useful means
to examine the present scenario. Temperature changes
may be used simultaneously to enhance the time sep-
arations. If the present picture is correct, such a non-
thermal perturbation at T−∆T should induce the growth
of domains on very short length scales, an effect that
can be erased quickly by heating up the system. There-
fore, complete memory should also be observed in a pro-
tocol where: T → T − ∆T → T and the strength of
the strength of non-thermal perturbation P is changed
as P = 0→ P = ∆P → P = 0 simultaneously.

Another good testing ground for the two approaches
may be systems with pinned-domain walls which is inti-
mately related with the problem of elastic manifolds in
random media [57–61,3,62] whose dynamics show aging
effects [28,29,63–67]. As we noted above a very natural
scenario can be obtained by a GREM based approach [23].
On the other hand, it is also straightforward to construct a
scenario based on a droplet picture [3] for this problem in a
way similar to our present work. A suitable toy model cor-
responding to the spherical Mattis model we studied here
is the elastic manifold pinned by quenched random force
field (Larkin model) subjected to cycling of the realiza-
tion of the random force field. Concerning this issue, it is
interesting to note that recent experiments on disordered
ferromagnets and ferro-electrics have revealed several sim-
ilarities with spin-glasses [19,21].

7.5 Some remarks on numerical simulations

A discouraging point of the numerical approach is that the
separation of time scales cannot be made so dramatic like
in experiments on spin-glasses. However, possible differ-
ences between experiments and simulations due to such a

difference of time scales should be amenable to a quantita-
tive analysis. One of the great advantages of the numerical
approach is that one can directly obtain the size of the do-
mains LT (t) at each time step using a spatial correlation
functions between two real replicas [79]. Then the scal-
ing ansatz presented in the present paper can be tested
very precisely since everything can be expressed in terms
of the size of the domains LT (t). Indeed this approach
has been very useful to test some scaling ansatz by the
droplet picture [5] for isothermal aging [80,82]. Further-
more, combined with an analysis on equilibrium properties
around and below the critical temperature [81], this kind
of approach allows one to quantitatively analyze possible
crossovers between critical and low-temperature behaviors
in the dynamical observables and in the domain growth
law itself [82].

It is important to note that due to thermally acti-
vated processes which presumably dominate relaxational
dynamics in spin-glass like systems, the length scales ex-
plored in simulations are actually very small. This might
be the reason why rejuvenation/memory effects are hard
to observe numerically [46–48], because both the above
scenarios rely on the existence of non overlapping (in
length scales) dynamical processes.

The fact that the growth law is so slow also implies
that both experiments and simulations will never be in the
ideal regime of asymptotically large length scales to test
the scaling predictions of droplet picture. Whether one
can observe some clear signatures of the droplet picture
within a realistic time scale may then depend very much
on details of the systems studied in experiments and sim-
ulations. Whether the usual Edwards-Anderson model is
the best model to describe real spin-glass systems is now
hotly discussed [49,48].
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Bernardi for useful discussions in the collaborations with them
which have motivated the present work.

Appendix A: Properties of the transformation
field

Here we summarize some useful statistical properties of
the transformation field introduced in (42). Due to (41),
the Fourier components of projection to different equilib-
rium states, say α and β, are related as,

φ̂αk =
∫

ddk′

(2π)d
(σ̂αβ)k′ φ̂

β
k−k′ , (A.1)

where we defined

(σ̂αβ)k =
∫

ddxσαβ(x)eikx. (A.2)
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The average becomes zero due to (43),

〈(σ̂αβ)k〉σ = 0. (A.3)

and the 2-body correlation function is obtained using
(44) as,

〈(σ̂αβ)k(σ̂αβ)l〉σ =∫
ddxddx′〈σαβx σαβx′ 〉σeikxeikx′ = ∆(2π)dδd(k + l). (A.4)

The 4-body correlation function in the real space is,

〈σαβ(x1)σαβ(x2)σαβ(x3)σαβ(x4)〉σ =

∆2{δd(x1 − x2)δd(x3 − x4) + δd(x1 − x3)δd(x2 − x4)

+ δd(x1 − x4)δd(x2 − x3)}
− 2∆3δd(x1 − x2)δd(x2 − x3)δd(x3 − x4), (A.5)

which becomes in the Fourier space,

〈(σ̂αβ)k1(σ̂αβ)k2(σ̂αβ)k3(σ̂αβ)k4〉σ =

∆2{(2π)dδd(k1 + k2)(2π)dδd(k3 + k4)

+ (2π)dδd(k1 + k3)(2π)dδd(k2 + k4)

+ (2π)dδd(k1 + k4)(2π)dδd(k2 + k3)}
− 2∆3(2π)dδd(k1 + k2 + k3 + k4).

We will also need to consider projections to three different
states say α, β and γ. A useful correlation function is,

〈σαβ(x1)σβγ(x2)σγβ(x3)σβα(x4)〉σ =

∆2δd(x1 − x4)δd(x2 − x3), (A.6)

which becomes in the Forier space,

〈(σ̂αβ)k1(σ̂βγ)k2(σ̂γβ)k3(σ̂βα)k4〉σ =

∆2(2π)dδd(k1 + k2)× (2π)dδd(k3 + k4) (A.7)

Finally, correlation of the generalized type (45) becomes
in the Fourier space,

〈σ̂α1α2
k1

σ̂α2α3
k2

. . . σ̂
αn−1αn
kn−1

σ̂αnα1
kn

〉σ
= (∆(2π)d)nδd(k1 + k2 + . . .+ kn). (A.8)

Appendix B: Properties of noise induced
by coarsening of unrelated phase

Here we consider a projection field φα(x) associated with
a ground state σα(x) and study the effect of coarsening
with respect to an unrelated ground state σβ(x).

We assume that the initial projection field φα(x, t′)
satisfies the normalization condition (φα(x, t′))2 = 1 at
any x which implies,

φ̂αk (t′)φ̂αl (t′) = (2π)2dδd(k + l)Wα
k (t′), (B.1)

where ∫
ddkWα

k (t′) = 1. (B.2)

due to (49) and (50). Given a spin configuration whose
projection to a ground state σα(x) is φα(x, t′) at time
t′, we project it to the ground state σβ(x) to prepare the
initial configuration. Using (A.1), the initial condition can
be read as,

φ̂βk(t′) =
∫

ddk′

(2π)d
(σ̂αβ)k′ φ̂αk−k′(t

′). (B.3)

Because of the random mapping through the transforma-
tion field (σ̂αβ)k, the resultant φ̂βk(t′) should also be a
random field. Using (A.3), we find that the mean is zero,

〈φ̂βk(t′)〉σ =
∫

ddk′

(2π)d
〈(σ̂αβ)k′〉σφ̂αk−k′(t′) = 0. (B.4)

Using (A.4), the correlation function becomes,

〈φ̂βk(t′)φ̂βl (t′)〉σ =∫
ddk′

(2π)d

∫
ddl′

(2π)d
〈(σ̂αβ)k′(σ̂αβ)l′〉σφαk−k′φαl−l′

= ∆(2π)dδd(k + l). (B.5)

In the last equation, we used (B.1) and (B.2). To summa-
rize, the initial condition for the coarsening is a random
initial condition which has only short-range correlation.
The solution of the equation of motion with such random
initial condition is known and shown in (59).

By transforming the solution of φ̂βk (t) at time t(> t′)
back to the ground state σα through (A.1), we obtain the
projection field as,

φ̂αk (t) =
∫

ddk′

(2π)d
(σ̂αβ)k′ φ̂

β
k−k′ (t)

=
∫

ddk′

(2π)d
(σ̂αβ)k′

e−(k−k′)2(t−t′)√
Γ0(t, t′)

φ̂βk′(t
′)

=
∫

ddk′

(2π)d
(σ̂αβ)k′

e−(k−k′)2(t−t′)√
Γ0(t, t′)

×
∫

ddk′′

(2π)d
(σ̂αβ)k′′ φ̂αk−k′−k′′(t

′). (B.6)

In the following we examine the statistical property of the
resultant projection field.

Using (A.4, 59) and (62) we obtain the expectation
value of the resultant projection field as,

〈φ̂αk (t)〉σ =
∫

ddk′

(2π)d

∫
ddk′′

(2π)d
〈(σ̂αβ)k′(σ̂αβ)k′′〉σ

× e−(k−k′)2t√
Γ0(t, t′)

φ̂αk−k′−k′′(t
′)

=
∆

(2π)d

∫
ddk′

e−(k−k′)2t√
Γ0(t, t′)

φ̂αk (t′)

= C0(t− t′, 0)φ̂αk (t′). (B.7)
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By taking inverse Fourier transform we obtain,

〈φα(x, t)〉σ = C0(t− t′, 0)φα(x, t′) · (B.8)

We find that the profile of the field is maintained on aver-
age with a reduced amplitude even after coarsening with
respect to completely unrelated phase. The amplitude de-
creases as the system de-correlates from the initial con-
figuration by coarsening. We have discussed a special case
with an initial condition in which symmetry is fully-broken
and found that the symmetry remains broken at any time.
The above result is the solution with general initial con-
ditions.

One can consider more general case where coarsen-
ing of multiple different equilibrium states are performed
successively. Suppose that coarsening of n different equi-
librium states, which are unrelated with α and with
each other, are performed in succession between (tn−1, t

′),
(tn−2, tn−1), . . . , (t1, t2) and (t, t1). Then following simi-
lar calculation and using (A.8) the projection field of α is
obtained as,

〈φα(x, t)〉σ =

C0(t− t1, 0)C0(t1 − t2, 0) . . . C0(tn−1 − t′, 0)φα(x, t′).
(B.9)

We find that the profile of the field is maintained with
the amplitude reduced multiplicatively every time when a
new unrelated phase is coarsened on top of it.

Next we consider the spatial correlation function of the
resultant projection field. Using (A.6), (59), (62), (B.1)
and (B.2) we obtain,

〈φ̂αk (t)φ̂αl (t)〉σ =
∫

ddk′

(2π)d

∫
ddk′′

(2π)d

∫
ddl′

(2π)d

×
∫

ddl′′

(2π)d
〈(σ̂αβ)k′(σ̂αβ)k′′(σ̂αβ)l′(σ̂αβ)l′′〉σ

× e−(k−k′)2(t−t′)√
Γ0(t, t′)

e−(l−l′)2(t−t′)√
Γ0(t, t′)

φ̂αk−k′−k′′(t
′)φ̂αl−l′−l′′(t

′)

= C2
0 (t− t′, 0)φ̂αk (t′)φ̂αl (t′)

+∆(2π)dδd(k + l)
[
1− 2C2

0 (t− t′, 0)

+
1

Γ0(t− t′, 0)
∆

(2π)d

∫
ddk′

×
∫

ddl′e−(k−k′)2(t−t′)e−(k+l′)2(t−t′)Wα
k−k′+l(t

′)
]
.

(B.10)

The structure-factor (49) is obtained as,

Wα
k (t) = C2

0 (t− t′, 0)Wα
k (t′) +

∆

(2π)d
[
1− 2C2

0 (t− t′, 0)

+
1

Γ0(t− t′, 0)
∆

(2π)d

∫
ddk′

×
∫

ddl′e−(k−k′)2(t−t′)e−(k+l′)2(t−t′)Wα
k−k′+l(t

′)
]
.

(B.11)

By taking inverse Fourier transform we obtain,

〈φα(x, t)φα(x′, t)〉σ − 〈φα(x, t)〉σ〈φα(x′, t)〉σ =

∆dd(x− x′)[1− 2C2
0 (t− t′, 0)] +

1
Γ0(t− t′, 0)

(
∆

(2π)d

)2

×
∫

ddk
∫

dd
′
k

∫
ddl′e−(k−k′)2(t−t′)e−(k+l′)2(t−t′)

×Wα
k−k′+l′(t

′) (B.12)

The above result implies that coarsening with respect an
unrelated phase induces noise with a certain spatial cor-
relation.

Appendix C: Response to uniform probing field

Here we study the linear response of the O(n) Mattis
model to an uniform external field. After describing the
formal solutions, we obtained the response function in the
one-step cycling of equilibrium states discussed in sec-
tion 4.6.

C.1 Formal solution

In the O(n) model in the spherical limit, response of the
field at wavelength k is only due to perturbation at the
same wavelength. A pulse staggered field ĥk(t′) at time t′
induces a displacement of the projection field at time t as,

δφk(t) = Rk(t, t′)δĥk(t′). (C.1)

The response function [55] associated with wave-vector k
reads,

Rk(t, t′) =
e−k

2(t−t′)

Γ (t, t′)
, (C.2)

where Γ (t, t′) is defined as (47).
Now let us consider the induced response δψ(x, t) due

to a uniform pulse field δhuni(t′) applied at time (t >)t′.
For simplicity, we assume that the system continues to
coarsen with respect to the same equilibrium state be-
tween t′ and t′. The relation (12) implies that the pulse
of the uniform field δhuni(t′) induce the pulse of the stag-
gered field at wavelength k as,

δĥk(t′) =
∫

ddye−ikyσ(y)δhuni(t′). (C.3)

Then using the relation (38), the induced response of the
real spin configuration becomes,

δψ(x, t) = σ(x)δφ(x, t)

= σ(x)
∫

ddk
(2π)d

eikxδφ̂k(t)

= σ(x)
∫

ddk
(2π)d

eikxRk(t, t′)

×
∫

ddye−ikyσ(y)δhuni(t′). (C.4)
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Finally the response function to uniform field is obtained
using (40) and (59) as,

Runi(t, t′) ≡
〈δψ(t)〉σ
δhuni(t′)

=
∆

(2π)d

∫
ddkRk(t, t′)

=
Req

uni(τ)√
Γ (t, t′)

(C.5)

where

Req
uni(τ) = Γ0(τ/2, 0) (C.6)

It is convenient to define re-scaled response,

R̃(t, t′) ≡ Runi(t, t′)
Req(t− t′) =

1√
Γ (t, t′)

· (C.7)

In the case of relaxation starting from random initial con-
dition we obtain the re-scaled response using (C.5), (C.6)
and (59) as,

R̃0(t, t′) ≡ 1/
√
Γ0(t, t′) =

(
t

t′

)−d/4
. (C.8)

C.2 Response function after one-step cycling

Here we study the behavior of the response function af-
ter one-step cycling of the equilibrium states discussed in
Section 4.6. The response function in the third stage of
the one-step cycling tw3 + tw2 + tw1 > t(t′) > tw2 + tw1 is
obtained formally using (C.5, C.6) as,

R̃III(t, t′)) =
1√

Γ1−step(t, t′)

=

√
Γ1−step(t′, tw2 + tw1)
Γ1−step(t, tw2 + tw1)

‘third stage’.

(C.9)

Here the Γ1−step factor is the one obtained in (96) which
can be rewritten as,

Γ1−step(t, tw2 + tw1) = [m2
mem(t− s, tw2, tw1)

+m2
rej(t− s, tw2, tw1) + m̃2(t− s, tw2, tw1)]

× Γ1−step(t, s)|s=tw2+tw1 . (C.10)

(The same form holds for Γ1−step(t′, tw2 +tw1).) The three
weights m2

mem, m2
rej and m̃2 describes ‘memory’ and ‘re-

juvenation’ as we discussed in in Section 4.4.2. The sum
of them equals 1 by definition.

In the inner-coarsening regime, we found that m2
rej ∼

1 while others are negligible. On the other hand, in
the plateau and outer-coarsening regime, we found that
m2

mem ∼ 1 while others are negligible. Here we are as-
suming the case of wide separation a) tw1 � tw2. In the

inner- and outer-coarsening regime, th re-scaled response
function becomes,

R̃III(t, t′) ' R̃0(t− tw2 − tw1, t
′ − tw2 − tw1)

inner-coarsening regime (C.11)

R̃III(t, t′) ' R̃0(t− tw2, t
′ − tw2)

plateau/outer-coarsening regime. (C.12)
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